Jenis dan Sumber Data

3.6 Model Vector Error Correction VEC

Sebagian besar data makroekonomi adalah tidak stasioner dalam level. Untuk menghindari hasil yang spurious, maka data harus distasionerkan dahulu, salah satu caranya dengan melakukan differencing. Namun memaksa variabel menjadi stasioner dengan differencing menyebabkan hilangnya informasi jangka panjang. Oleh karena itu berkembang metode analisis VECM yang dapat mengakomodir data yang tidak stasioner dalam level dengan tetap memperoleh hasil yang tidak spurious. Menurut Enders 2004, VECM adalah VAR terestriksi yang digunakan untuk variabel yang tidak stasioner tetapi memiliki potensi untuk terkointegrasi. Setelah dilakukan pengujian kointegrasi pada model yang digunakan maka persamaan kointegrasi dimasukkan dalam model VAR yang digunakan. Memasukkan matriks kointegrasi dalam model VAR akan dihasilkan model VAR terkointegrasi yang disebut VECM. Dalam VECM terdapat speed of adjustment dari jangka pendek ke jangka panjang. Model umum VEC dalam JMulTi Lütkepohl Kratzig 2004 adalah sebagai berikut: = [ ′ : � ′ ] � − − ∞ � + − + ⋯ + − + + ⋯ + − + + 14 dimana = , … , ′ adalah vektor K variabel endogen = , … , ′ adalah vector M variabel eksogen ∞ = mengandung seluruh deterministic term yang dimasukkan dalam hubungan kointegrasi. Deterministic terms meliputi konstanta, linear trend, seasonal dummy dan variabel dummy lainnya. = mengandung seluruh deterministic terms yang tidak dimasukkan dalam hubungan kointegrasi = vektor residual diasumsikan zero mean white noise berdimensi K = matriks loading coefficient berdimensi K x r = matriks yang mengandung hubungan kointegrasi berdimensi K x r Rank kointegrasi r berada dalam range: 1 − 1 , , = matriks parameter � memiliki dimensi kolom r dan dimensi baris sesuai dimensi − ∞ Persamaan 14 merupakan bentuk struktural yang hanya diestimasi jika identifikasi restriksi diterapkan. Jika dispesifikasi menjadi matriks identitas maka model tersebut menjadi reduced form. Dimungkinkan untuk menspesifikasi model tanpa memasukkan variabel eksogen. Estimasi dengan Johansen dapat dilakukan pada model dalam bentuk: = ∗′ � − − ∞ � + − + ⋯ + − + + dimana: ∗ = ��� dimana dimensi baris dari ∗ adalah ∗ , sehingga ∗ adalah matriks berdimensi ∗ x . ∗ adalah matrik kointegrasi yang otomatis dinormalisasi sebagai berikut: ∗ = � ∗ − ∗ � Estimasi dengan metode Johansen dapat dilakukan jika: 1. = 2. Tidak ada restriksi nol pada matriks = 1, … , 3. Tidak ada variabel eksogen sehingga reduced form dispesifikasi tanpa variabel eksogen dan tiap persamaan memiliki variabel penjelas yang sama.

3.7 Model Structural VAR SVAR

Menurut Keating 1992, IRF dan FEVD yang menjadi alat analisis utama dalam model VAR merupakan indikator dinamika model empiris yang diperoleh dari teknik yang tidak ada hubungannya dengan teori ekonomi, yaitu melalui dekomposisi Choleski pada matriks kovarian residual VAR. Kritik mengenai tidak diakomodasinya teori ekonomi dalam model VAR menyebabkan pengembangan model VAR menjadi Structural VAR SVAR. Kelebihan SVAR dibandingkan dengan model VAR adalah diakomodasinya teori ekonomi dalam model VAR. Metode SVAR memungkinkan peneliti untuk menggunakan teori ekonomi dalam mentransformasi reduced form VAR ke sistem persamaan struktural. Parameter diestimasi dengan menerapkan restriksi struktural contemporaneous . Perbedaan utama antara atheoritical VAR dengan structural VAR adalah pada IRF dan FEVD. IRF dan FEVD pada SVAR dapat memberikan interpretasi struktural sehingga banyak ekonom percaya bahwa SVAR dapat membuka informasi yang terkandung dalam model time series berbentuk reduced form Keating, 1992. Model SVAR dapat digunakan untuk mengidentifikasi guncangan yang akan dilacak dalam IRF dengan menerapkan restriksi pada matriks A dan B dalam model struktural sebagai berikut: = ∗ − + ⋯ + ∗ − + ∗ + ⋯ + ∗ − + ∗ + � 15 � adalah structural error, diasumsikan white noise berukuran 0, . Koefisien matriks pada persamaan 15 berbeda dengan koefisien reduced form pada persamaan 13. Residual reduced form, , diperoleh dari model struktural yaitu: = − � sehingga Σ = − ′ − ′.

3.8 Model Structural VEC SVEC

Restriksi jangka pendek sesuai dengan teori ekonomi juga dapat diterapkan pada model VEC apabila variabel ditemukan tidak stasioner dalam level namun terkointegrasi. VECM diperkaya dengan teori ekonomi sehingga menjadi Structural VECM . Menurut Lütkepohl dan Kratzig 2004, model SVEC dapat digunakan untuk mengidentifikasi guncangan agar dapat terlacak dalam analisis IRF dengan menerapkan restriksi pada matriks B yaitu: � = dimana: adalah matriks efek contemporaneous dari guncangan. Estimasi dilakukan oleh maximum likelihood . Untuk mengidentifikasi guncangan struktural dalam penelitian ini maka diterapkan restriksi struktural contemporaneous terhadap matriks B yang menggambarkan struktur hubungan jangka pendek antar variabel sebagai berikut: 1 1 1 1 1 1 � � � � � � ∗ � ∗ = � ∗ ∗ dimana: = efek contemporaneous harga minyak dunia ∗ terhadap PDB = efek contemporaneous PDB terhadap kurs riil = efek contemporaneous suku bunga AS ∗ terhadap kurs riil = efek contemporaneous PDB terhadap permintaan uang riil = efek contemporaneous kurs riil terhadap permintaan uang riil = efek contemporaneous suku bunga domestik terhadap permintaan uang riil = efek contemporaneous PDB terhadap suku bunga domestik = efek contemporaneous kurs riil terhadap suku bunga domestik = efek contemporaneous suku bunga AS terhadap suku bunga domestik = efek contemporaneous harga minyak dunia terhadap suku bunga

3.9 Analisis Dinamika Respon Business Cycle Indonesia

Untuk mengetahui dinamika respon masing-masing variabel dalam penelitian terhadap guncangan pada salah satu variabel digunakan analisis Impulse Response Functions IRF. IRF merupakan suatu metode yang digunakan untuk melihat respon dinamis setiap variabel endogen terhadap suatu guncangan variabel tertentu. Hal ini disebabkan karena guncangan variabel ke-i tidak hanya berpengaruh terhadap variabel ke-i saja namun ditransmisikan kepada semua variabel endogen lainnya melalui struktur dinamis atau struktur lag dalam VAR. Sehingga IRF mengukur pengaruh suatu guncangan pada suatu waktu kepada inovasi variabel endogen pada saat tersebut dan di masa yang akan datang. Berdasarkan analisis ini dapat diketahui dampak guncangan eksternal dan domestik dari sisi permintaan dan penawaran bersifat sementara atau permanen, serta apakah respon yang ditunjukkan tiap variabel signifikan secara statistik.

3.10 Analisis Sumber Guncangan Utama Business Cycle Indonesia

Untuk mengetahui guncangan mana yang paling berperan dalam menjelaskan setiap variabel makroekonomi dalam model digunakan Forecast Error Variance Decomposition FEVD. FEVD merupakan metode yang digunakan untuk melihat besarnya peran guncangan variabel tertentu dalam persentase terhadap variabilitas tiap variabel dalam model. Metode ini mencirikan suatu struktur dinamis dalam model VAR. Melalui metode ini dapat diketahui kekuatan dan kelemahan masing-masing variabel dalam kurun waktu yang panjang. Jadi melalui FEVD dapat diketahui secara pasti faktor-faktor yang memengaruhi fluktuasi variabel tertentu. Berdasarkan analisis ini dapat disimpulkan bagaimana peran guncangan-guncangan permintaan dan penawaran baik eksternal dan domestik terhadap business cycle Indonesia.