Pemetaan Memori Alokasi Memori

Ketika sebuah proses datang, ia akan diletakkan ke dalam input queue antrian proses pada disk yang menunggu dibawa ke memori untuk dieksekusi sesuai dengan ukuran terkecil partisi yang mampu menampungnya. Kerugian dari mengurutkan proses ke dalam antrian yang berbeda berdasarkan ukurannya muncul ketika partisi yang besar akan menjadi kosong karena tidak ada proses dengan ukuran sesuai yang diletakkan di partisi tersebut. Namun di lain sisi, antrian untuk partisi dengan ukuran kecil sangat padat karena banyaknya proses dengan ukuran yang sesuai. Cara alternatif yang dapat dilakukan adalah dengan membuat sebuah antrian tunggal seperti terlihat pada gambar diatas. Ketika sebuah partisi bebas, proses dengan ukuran sesuai partisi tersebut yang terletak di depan antrian dapat dimasukkan lalu dieksekusi. Namun metode ini memiliki kelemahan, yaitu bagaimana jika proses yang memasuki partisi yang cukup besar ternyata ukurannya jauh lebih kecil dari partisi itu sendiri? Masalah ini dapat diatasi dengan mencari proses terbesar ke dalam seluruh antrian yang dapat ditampung oleh sebuah partisi pada saat itu. Namun algoritma ini mendiskriminasikan proses yang kecil karena proses yang diambil adalah proses terbesar yang dapat dimuat ke dalam partisi yang sedang bebas saat itu. Dalam partisi tetap ini, sistem operasi menggunakan sebuah tabel untuk mengindikasikan bagian memori mana yang kosong dan mana yang terisi. Pada awalnya semua partisi kosong dan dianggap sebagai sebuah blok besar yang tersedia hole. Ketika sebuah proses datang dan membutuhkan memori, ia akan dicarikan lubang yang cukup besar yang mampu menampungnya. Setelah menemukannya, memori yang dialokasikan untuknya hanyalah sebesar memori yang dibutuhkannya sehingga menyisakan tempat untuk memenuhi kebutuhan proses lain. Sistem operasi mencatat kebutuhan memori masing-masing proses yang berada dalam antrian serta jumlah memori yang masih tersedia untuk menentukan proses mana yang harus dimasukkan. Sistem akan memiliki sebuah daftar yang berisi ukuran blok yang masih tersedia serta antrian masukan proses. Sistem operasi dapat mengurutkan antrian input tersebut berdasarkan algoritma penjadwalan. Memori dialokasikan pada proses yang ukurannya sesuai hingga akhirnya kebutuhan memori untuk proses berikutnya tidak dapat dipenuhi karena tidak ada lagi blok yang cukup untuknya. Sistem operasi akan menunggu hingga blok yang cukup besar untuk menampung proses tersebut tersedia atau sistem operasi dapat juga melewati proses tersebut dan mencari jikalau ada proses dengan kebutuhan memori yang dapat ditampung oleh blok memori yang tersedia. Pada kenyatannya, partisi tetap kurang mengoptimalkan memori sebagai sumber daya yang penting karena seringkali terjadi, partisi yang cukup besar dialokasikan untuk proses dengan ukuran yang lebih kecil sehingga sisa dari partisi tersebut tidak digunakan. Pada alokasi penyimpanan dinamis, kumpulan lubang-lubang ruang memori kosong dalam berbagai ukuran tersebar di seluruh memori sepanjang waktu. Apabila ada proses yang datang, sistem operasi akan mencari lubang yang cukup besar untuk menampung memori tersebut. Apabila lubang yang tersedia terlalu besar, maka ia akan dipecah menjadi 2. Satu bagian digunakan untuk menampung proses tersebut sedangkan bagian lain akan digunakan untuk bersiap-siap menampung proses lain. Setelah proses tersebut selesai menggunakan alokasi memorinya, ia akan melepaskan ruang memori tersebut dan mengembalikannya sebagai lubang-lubang kembali. Apabila ada 2 lubang yang berdekatan, keduanya akan bergabung untuk membentuk lubang yang lebih besar. Pada 12 saat itu, sistem harus memeriksa apakah ada proses dalam antrian yang dapat dimasukkan ke dalam ruang memori yang baru terbentuk tersebut. Isu utama dari alokasi penyimpanan dinamis adalah bagaimana memenuhi permintaan proses berukuran n dengan kumpulan lubang-lubang yang tersedia. Ada beberapa solusi untuk masalah ini:

1. First Fit. Memory manager akan mencari sepanjang daftar yang berisi besarnya ukuran memori

yang dibutuhkan oleh proses dalam antrian beserta ukuran memori yang tersedia pada saat itu. Setelah menemukan lubang yang cukup besar ruang memori dengan ukuran lebih besar dari ukuran yang dibutuhkan oleh proses bersangkutan, lubang itu lalu dipecah menjadi 2 bagian. Satu bagian untuk proses tersebut dan bagian lain digunakan untuk memori yang tak terpakai, kecuali tentu saja jika memang ukuran ruang memori tersebut sama besar dengan yang dibutuhkan oleh proses. First fit ini merupakan algoritma yang bekerja dengan cepat karena proses pencariannya dilakukan sesedikit mungkin

2. Next Fit. Algoritma ini hampir sama persis dengan first fit, kecuali next fit meneruskan proses

pencarian terhadap lubang yang cukup besar untuk sebuah proses mulai dari lubang sebelumnya yang telah sesuai dengan proses sebelumnya. Pendek kata, algoritma ini tidak memulai pencarian dari awal. Gambar di bawah ini mengilustrasikan sebuah contoh yang membedakan antara first fit dan next fit. Jika blok berukuran 2 dibutuhkan maka first fit akan memilih lubang pada alamat 5, namun next fit akan memilih lubang pada 18. Gambar 2.4. Bagian Memori dengan 5 Proses dan 3 Lubang

3. Best Fit. Best fit mencari dari keseluruhan daftar kecuali jika daftar tersebut telah terurut

berdasarkan ukuran, dan memilih lubang terkecil yang cukup untuk menampung proses yang bersangkutan. Daripada harus memecah sebuah lubang besar, yang mungkin saja dapat lebih bermanfaat nantinya, best fit mencari lubang dengan ukuran yang hampir sama dengan yang dibutuhkan oleh proses. Strategi ini menghasilkan sisa lubang terkecil. Kekurangan best fit jika dibandingkan dengan first fit adalah lebih lambat karena harus mencari ke seluruh tabel tiap kali dipanggil. Berdasarkan gambar diatas jika blok berukuran 2 dibutuhkan maka berdasarkan best fit akan memilih lubang pada alamat 18 yaitu lubang terkecil yang cukup menampung permintaan proses tersebut.

4. Worst Fit. Worst fit akan mencari lubang terbesar. Sebagaimana best fit kita harus mencari dari

keseluruhan daftar kecuali jika daftar tersebut telah terurut berdasarkan ukuran. Strategi ini menghasilkan sisa lubang terbesar. Berdasarkan gambar diatas jika blok berukuran 2 dibutuhkan maka berdasarkan worst fit akan memilih lubang pada alamat 28 yaitu lubang terbesar yang cukup menampung permintaan proses tersebut.

2.5. Fragmentasi

Fragmentasi merupakan fenomena munculnya lubang-lubang ruang memori kosong yang tidak cukup besar untuk menampung permintaan alokasi memori dari proses. Fragmentasi terdiri dari dua jenis:

1. Fragmentasi Eksternal. Dalam kasus first fit dan juga best fit sebagaimana yang telah

dijelaskan di atas, pada saat proses dimasukkan atau dipindahkan dari memori, ruang memori yang tidak terpakai akan dipecah menjadi bagian yang kecil sisa dari alokasi sebuah proses pada 13