Algoritma Lainnya Algoritma Ganti Halaman
Bab 7. Strategi Alokasi Bingkai
7.1. Pendahuluan
Setiap proses perlu mendapat alokasi memori agar proses tersebut dapat dieksekusi dengan baik. Masalah selanjutnya adalah bagaimana caranya untuk mengalokasikan memori bagi setiap proses yang ada. Saat proses akan dieksekusi, terjadi page fault sehingga sistem akan menggantinya dengan halaman di memori. Untuk melakukan penggantian ini diperlukan bingkai yang terdapat di sistem. Proses dapat menggunakan setiap bingkai yang sedang bebas di sistem. Hal ini mengakibatkan perlu adanya pengaturan lebih lanjut agar tiap proses bisa mendapatkan bingkai yang cukup untuk melakukan penggantian ini.7.2. Jumlah Bingkai
Hal yang perlu diperhatikan dalam strategi alokasi bingkai adalah berapa jumlah bingkai yang harus dialokasikan pada proses tersebut. Jumlah bingkai yang dialokasikan tidak boleh melebihi jumlah bingkai yang tersedia. Hal lain yang perlu diperhatikan adalah jumlah bingkai minimum yang harus dialokasikan agar instruksi dapat dijalankan, karena jika terjadi kesalahan halaman sebelum eksekusi selesai, maka instruksi tersebut harus diulang. Sehingga jumlah bingkai yang cukup harus tersedia untuk menampung semua halaman yang dibutuhkan oleh sebuah instruksi.7.3. Strategi Alokasi Bingkai
Ada dua jenis algoritma yang biasa digunakan untuk pengalokasian bingkai, yaitu: 1. Algoritma Fixed Allocation . Algoritma fixed allocation dibedakan menjadi dua macam yaitu equal allocation dan proportional allocation. Pada algoritma equal allocation jumlah bingkai yang diberikan pada setiap proses jumlahnya sama mn bingkai, m = jumlah bingkai, n = jumlah proses, misalnya: ada 5 buah proses dan 100 bingkai tersisa, maka tiap proses akan mendapatkan 20 bingkai. Algoritma ini kurang baik digunakan jika proses-proses yang ada besarnya berbeda-beda proses yang besar diberikan bingkai yang sama dengan proses yang kecil, misalnya: ada 2 buah proses sebesar 10 K dan 127 K, ada 64 bingkai bebas. Jika kita memberikan bingkai yang sama yaitu sebesar 32 untuk tiap proses maka misalnya saja proses satu ternyata hanya memerlukan 10 bingkai, dan alhasil 22 bingkai pada proses pertama akan terbuang percuma. Untuk mengatasi masalah tersebut algoritma proportional allocation-lah yang cocok digunakan, yaitu pengalokasian bingkai disesuaikan dengan besarnya suatu proses, contoh: Si = besarnya proses Pi S = Si m = jumlah total bingkai ai = alokasi bingkai untuk Pi SiS x m m = 64 S1 = 10 S2 = 127 a1 = 10137 x 64 = 5 bingkai a2 = 127137 x 64 = 59 bingkai2. Algoritma Priority Allocation . Algoritma priority allocation merupakan algoritma
pengalokasian dengan memberikan jumlah bingkai sesuai dengan prioritas proses tersebut. Pendekatannya mirip dengan proportional allocation, perbandingan frame-nya tidak tergantung ukuran relatif dari proses, melainkan lebih pada prioritas proses atau kombinasi ukuran dan 47Parts
» SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Memori Calon Revisi 5.0 Kapan?
» Pendahuluan Konsep Dasar Memori
» Proteksi Perangkat Keras Konsep Dasar Memori
» Address Binding Ruang Alamat Logika dan Fisik
» Pemuatan Dinamis Linking Dinamis Pustaka Bersama
» Rangkuman Konsep Dasar Memori
» Pendahuluan Swap Alokasi Memori
» Pemetaan Memori Alokasi Memori
» Partisi Memori Alokasi Memori
» First Fit. Memory manager akan mencari sepanjang daftar yang berisi besarnya ukuran memori
» Next Fit. Algoritma ini hampir sama persis dengan first fit, kecuali next fit meneruskan proses
» Best Fit. Best fit mencari dari keseluruhan daftar kecuali jika daftar tersebut telah terurut
» Worst Fit. Worst fit akan mencari lubang terbesar. Sebagaimana best fit kita harus mencari dari
» Fragmentasi Eksternal. Dalam kasus first fit dan juga best fit sebagaimana yang telah
» Metode Dasar Pemberian Halaman
» Dukungan Perangkat Keras Pemberian Halaman
» Tabel Halaman Bertingkat Pemberian Halaman
» Pendahuluan Arsitektur Intel Pentium
» Segmentasi Arsitektur Intel Pentium
» Segmentasi Pentium Arsitektur Intel Pentium
» Penghalaman Penghalaman Linux Rangkuman
» Demand Paging Memori Virtual
» Penanganan Page Fault Memori Virtual
» Dasar Penggantian Halaman Memori Virtual
» Pendahuluan Algoritma Ganti Halaman
» Reference String Algoritma Ganti Halaman
» Algoritma FIFO First In First Out
» Algoritma Optimal Algoritma LRU Least Recently Used
» Implementasi LRU Algoritma Ganti Halaman
» Algoritma Lainnya Algoritma Ganti Halaman
» Rangkuman Algoritma Ganti Halaman
» Pendahuluan Strategi Alokasi Bingkai
» Jumlah Bingkai Strategi Alokasi Bingkai
» Strategi Alokasi Bingkai Strategi Alokasi Bingkai
» Algoritma Priority Allocation . Algoritma priority allocation merupakan algoritma
» Penggantian Global. Penggantian secara global memperbolehkan suatu proses mencari bingkai
» Pendahuluan Sistem Buddy Seputar Alokasi Bingkai
» Alokasi Slab Seputar Alokasi Bingkai
» Prepaging Ukuran Halaman Seputar Alokasi Bingkai
» Penguncian MK Seputar Alokasi Bingkai
» Windows XP Rangkuman Seputar Alokasi Bingkai
» The paging mechanism. Menentukan halaman-halaman mana saja yang harus dibawa kembali
» Perangkat Keras MK Sistem MK
» Perangkat karakter. SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Komponen Elektronis. Komponen Elektronis disebut juga dengan controller perangkat.
» Control. Register ini ditulis oleh CPU untuk memulai perintah atau untuk mengganti modus
» Memory mapped . SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Sequensial atau random-access . SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Synchronous atau asyinchronous . SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Sharable atau dedicated . SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Speed of operation . SistemOperasi-4.X-2. 5372KB Mar 29 2010 05:04:06 AM
» Pendahuluan Subsistem MK Kernel
» Penjadwalan MK Subsistem MK Kernel
» Penyimpanan Masal Dapat berbagi perangkat secara adil diantara banyak proses yang ingin mengakses
» Access Right . Tiap proses membuka berkas dalam access mode . Informasi ini disimpan pada
» Akses sekuensial. Akses ini merupakan yang paling sederhana dan paling umum digunakan.
» Akses langsung relative access . Sebuah berkas dibuat dari rekaman-rekaman logical yang
» Tipe-tipe akses. Kebutuhan untuk mengamankan berkas berhubungan langsung dengan
» Operasi Direktori Struktur Direktori
» Membuat berkas. Saat sebuah berkas baru dibuat, maka sebuah entri akan ditambahkan ke
» Menghapus berkas. Ketika suatu berkas tidak dibutuhkan lagi, maka berkas tersebut bisa
» Menampilkan isi direktori. Menampilkan seluruh atau sebagian daftar berkas-berkas yang ada
» Mengubah nama berkas. Nama suatu berkas merepresentasikan isi berkas terhadap pengguna.
» Akses sistem berkas. Pengguna bisa mengakses setiap direktori dan setiap berkas yang berada
» Update direktori. Karena sebagian atribut dari berkas disimpan dalam direktori, maka
» Direktori Bertingkat Struktur Direktori
» Direktori Berstruktur Pohon Struktur Direktori
» Pendahuluan Sistem Berkas FHS
» Pendahuluan Struktur Sistem Berkas
» File Control Block Implementasi Sistem Berkas
» Partisi Sistem ROOT Implementasi Sistem Berkas
» Alokasi Berkesinambungan . 2. Alokasi Link .
» Linked Scheme . Untuk suatu berkas, blok indeks normalnya adalah satu blok. Untuk berkas
» Pendahuluan Aneka Aspek Sistem Berkas
» Kinerja Aneka Aspek Sistem Berkas
» Linked Allocation. Hampir sama seperti contiguous allocation , metode ini dapat langsung
» Indexed Allocation. : Metode ini menyimpan index blok di memori. Jika index blok yang dicari
» Efisiensi Aneka Aspek Sistem Berkas
» NFS Aneka Aspek Sistem Berkas
» Mount NFS Aneka Aspek Sistem Berkas
» Protokol NFS Aneka Aspek Sistem Berkas
» Rangkuman Aneka Aspek Sistem Berkas
» Pendahuluan Struktur Disk Media Disk
» Pemilihan Algoritma Penjadwalan Media Disk
» Pendahuluan Sistem Penyimpanan Masal
» Format Sistem Penyimpanan Masal
» Boot Sistem Penyimpanan Masal
» Bad Block Swap Sistem Penyimpanan Masal
» RAID Pemilihan Tingkatan RAID
» Penyimpanan Tersier Sistem Penyimpanan Masal
» Dye-Polimer disk. Dye-polimer merekam data dengan membuat bumpgelombang disk dilapisi
» Kecepatan . Kecepatan dari penyimpanan tersier memiliki dua aspek: benwidth dan latency,
» Kehandalan. Removable magnetic disk tidak begitu dapat diandalkan dibandingkan dengan
» Pendahuluan Sistem Berkas Linux
» Locked. Transaksi tidak lagi menerima operasi atomic update, dan belum semua atomic update
» Flush. Semua atomic update yang terdapat dalam suatu transaksi telah selesai, sehingga
» Commit. Sistem akan menulis commit record yang menandakan penulisan ke jurnal telah
» Finished. Transaksi dan commit record telah selesai ditulis ke jurnal.
» Topik Lanjutan Berkas yang namanya adalah string .
» Kendali Aplikasi Application Control . Untuk memperkecil dan mendeteksi operasi-operasi
» Keheterogenan perangkatmultiplisitas perangkat. Suatu sistem terdistribusi dapat dibangun
» Keterbukaan. Setiap perangkat memiliki antarmuka interface yang di-publish ke komponen
» Concurrency of components. Pengaksesan suatu komponensumber daya secara bersamaan
» Transparansi. Bagi pemakai, keberadaan berbagai perangkat multiplisitas perangkat dalam
» Computation Migration. Terkadang, kita ingin mentransfer komputasi, bukan data. Pendekatan
» Process Migration. Ketika sebuah proses dieksekusi, proses tersebut tidak selalu dieksekusi di
» Naming and name resolution. Bagaimana dua buah proses menempatkanmemposisikan satu
» Dengan remote service. Permintaan akses data dikirimkan ke server. Server melakukan akses ke
» Pendahuluan Waktu Nyata dan Multimedia
» Kernel Waktu Nyata Waktu Nyata dan Multimedia
» Penjadwalan Berdasarkan Prioritas Waktu Nyata dan Multimedia
» Kernel Preemptif Waktu Nyata dan Multimedia
» Pengurangan Latensi Waktu Nyata dan Multimedia
» Penjadwalan Proses Waktu Nyata dan Multimedia
» Penjadwalan Disk Manajemen Berkas
» Manajemen Jaringan Waktu Nyata dan Multimedia
» UniMulticasting Waktu Nyata dan Multimedia
» Streaming Protocol Waktu Nyata dan Multimedia
» Kompresi Waktu Nyata dan Multimedia
» Rangkuman Waktu Nyata dan Multimedia
» Pendahuluan Perancangan dan Pemeliharaan
» Merancang Antarmuka. Dalam merancang antarmuka ada beberapa tahapan yang harus
Show more