Architectures of Generic Routers
13.1 IP ROUTER DESIGN
13.1.1 Architectures of Generic Routers
The architectures of generic routers can be broadly classified into two categories. One is schematically shown in Figure 13.1. A number of network interfaces , forwarding engines, and a network processor are interconnected with a switching fabric. Inbound interfaces send packet headers to the forwarding engines through the switching fabric. The forwarding engines in turn deter- mine which outgoing interface the packet should be sent to. This information is sent back to the inbound interface, which forwards the packet to the outbound interface. The only task of a forwarding engine is to process packet headers. All other tasksᎏsuch as participating in routing protocols, resource reservation, handling packets that need extra attention, and other adminis- trative dutiesᎏare handled by the network processor. The BBN multigigabit w x router 13 is an example of this design. Another router architecture is shown in Figure 13.2. Here, processing elements in the inbound interface decide to which outbound interface IP ROUTER DESIGN 367 Fig. 13.1 Router design with forwarding engines. Fig. 13.2 Router design with processing power on interfaces. packets should be sent. The GRF routers from Ascend Communications, for instance, use this design. The forwarding engines in Figure 13.1 and the processing elements in Figure 13.2 use a local version of the routing tableᎏa forwarding table, downloaded from the network processorᎏto make their routing decisions. It is not necessary to download a new forwarding table for each routing update. Routing updates can be frequent, but since routing protocols need time on the order of minutes to converge, forwarding tables can be allowed to grow a little stale and need not change more than once per second. The network processor needs a dynamic routing table designed for fast updates and fast generation of forwarding tables. The forwarding tables, on the other hand, can be optimized for lookup speed and need not be dynamic. IP ROUTE LOOKUPS 36813.1.2 IP Route Lookup Design
Parts
» ATM Switch Structure ATM SWITCH SYSTEMS
» DESIGN CRITERIA AND PERFORMANCE REQUIREMENTS
» Internal Link Blocking Output Port Contention Head-of-Line Blocking
» Shared-Medium Switch Time-Division Switching
» Single-Path Switches Space-Division Switching
» Multiple-Path Switches Space-Division Switching
» Internally Buffered Switches Recirculation Buffered Switches
» Input- and Output-Buffered Switches Virtual-Output-Queueing Switches
» Input-Buffered Switches PERFORMANCE OF BASIC SWITCHES
» Output-Buffered Switches PERFORMANCE OF BASIC SWITCHES
» Completely Shared-Buffer Switches PERFORMANCE OF BASIC SWITCHES
» Bernoulli Arrival Process and Random Traffic On–Off Model and Bursty Traffic
» Multiline Input Smoothing Speedup Parallel Switch
» Window-Based Lookahead Selection Increasing Scheduling Efficiency
» VOQ-Based Matching Increasing Scheduling Efficiency
» Parallel Iterative Matching PIM Iterative Round-Robin Matching iRRM
» Iterative Round-Robin with SLIP i SLIP
» Dual Round-Robin Matching DRRM
» Round-Robin Greedy Scheduling SCHEDULING ALGORITHMS
» Bidirectional Arbiter Design of Round-Robin Arbiters r
» Token Tunneling This section introduces a more efficient arbi-
» Most-Urgent-Cell-First Algorithm MUCFA OUTPUT-QUEUING EMULATION
» Critical Cell First CCF Last In, Highest Priority LIHP
» LOWEST-OUTPUT-OCCUPANCY-CELL-FIRST JONATHAN CHAO CHEUK LAM
» LINKED LIST APPROACH JONATHAN CHAO CHEUK LAM
» CONTENT-ADDRESSABLE MEMORY APPROACH JONATHAN CHAO CHEUK LAM
» Washington University Gigabit Switch
» Shared-Memory Switch with a Multicast Logical Queue Shared-Memory Switch with Cell Copy
» Shared-Memory Switch with Address Copy
» BANYAN NETWORKS JONATHAN CHAO CHEUK LAM
» Three-Phase Implementation Ring Reservation
» BATCHER-SORTING NETWORK THE SUNSHINE SWITCH
» Tandem Banyan Switch DEFLECTION ROUTING
» Shuffle-Exchange Network with Deflection Routing
» Dual Shuffle-Exchange Network with Error-Correcting Routing
» Generalized Self-Routing Algorithm Broadcast Banyan Network
» Boolean Interval Splitting Algorithm Nonblocking Condition of Broadcast Banyan Networks A
» Encoding Process MULTICAST COPY NETWORKS
» Concentration Decoding Process Overflow and Call Splitting
» A. Cyclic Running Adder Network Figure 5.34 shows the struc-
» Concentration The starting point in a CRAN may not be port 0,
» Basic Architecture SINGLE-STAGE KNOCKOUT SWITCH
» Knockout Concentration Principle SINGLE-STAGE KNOCKOUT SWITCH
» Construction of the Concentrator
» Maximum Throughput CHANNEL GROUPING PRINCIPLE
» Two-Stage Configuration A TWO-STAGE MULTICAST OUTPUT-BUFFERED ATM SWITCH
» Multicast Grouping Network A TWO-STAGE MULTICAST OUTPUT-BUFFERED ATM SWITCH
» Translation Tables A TWO-STAGE MULTICAST OUTPUT-BUFFERED ATM SWITCH
» Cross-Stuck CS Fault Toggle-Stuck TS Fault Verticalr
» Toggle-Stuck and Cross-Stuck Cases
» Vertical-Stuck and Horizontal-Stuck Cases
» Cross-Stuck and Toggle-Stuck Cases
» Vertical-Stuck Case Horizontal-Stuck SWE Case
» APPENDIX JONATHAN CHAO CHEUK LAM
» BASIC ARCHITECTURE JONATHAN CHAO CHEUK LAM
» MULTICAST CONTENTION RESOLUTION ALGORITHM
» IMPLEMENTATION OF INPUT PORT CONTROLLER
» Cell Loss Probability PERFORMANCE
» ATM ROUTING AND CONCENTRATION CHIP
» Memoryless Multistage Concentration Network
» Buffered Multistage Concentration Network
» Resequencing Cells ENHANCED ABACUS SWITCH
» Complexity Comparison ENHANCED ABACUS SWITCH
» Packet Interleaving ABACUS SWITCH FOR PACKET SWITCHING
» Cell Interleaving ABACUS SWITCH FOR PACKET SWITCHING
» MSDA Structure MULTIPLE-QOS SDA SWITCH
» OVERVIEW OF CROSSPOINT-BUFFERED SWITCHES OVERVIEW OF INPUT
» Basic Architecture Unicasting Operation
» ROUTING PROPERTIES AND SCHEDULING METHODS
» A SUBOPTIMAL STRAIGHT MATCHING METHOD
» Basic Architecture Distributed and Random Arbitration
» Basic Architecture THE CONTINUOUS ROUND-ROBIN DISPATCHING SWITCH
» Concurrent Round-Robin Dispatching Scheme
» Homogeneous Capacity and Route Assignment
» The Staggering Switch ALL-OPTICAL PACKET SWITCHES
» HYPASS OPTOELECTRONIC PACKET SWITCHES
» STAR-TRACK OPTOELECTRONIC PACKET SWITCHES
» Cisneros and Brackett’s Architecture
» Basic Architecture THE 3M SWITCH
» Cell Delineation Unit THE 3M SWITCH
» VCI-Overwrite Unit Cell Synchronization Unit
» Input and Output Forwarding Engines Input and Output Switch Interfaces
» Route Controller Router Module and Route Controller
» Input Optical Module Output Optical Module Tunable Filters
» Principles of Ping-Pong Arbitration Consider an N-input
» Performance of PPA Implementation of PPA
» Priority PPA Ping-Pong Arbitration Unit
» Component Complexity OIN Complexity
» Power Budget Analysis OPTICAL INTERCONNECTION NETWORK FOR
» Crosstalk Analysis OPTICAL INTERCONNECTION NETWORK FOR
» System Considerations WIRELESS ATM STRUCTURE OVERVIEWS
» NEC’s WATMnet Prototype System
» Olivetti’s Radio ATM LAN Virtual Connection Tree
» BAHAMA Wireless ATM LAN NTT’s Wireless ATM Access
» Radio Physical Layer RADIO ACCESS LAYERS
» Medium Access Control Layer Data Link Control Layer
» Connection Rerouting HANDOFF IN WIRELESS ATM
» Buffering Cell Routing in a COS
» Design of a Mobility-Support Switch
» Performance MOBILITY-SUPPORT ATM SWITCH
» Architectures of Generic Routers
» IP ROUTE LOOKUP BASED ON CACHING TECHNIQUE IP ROUTE LOOKUP BASED ON STANDARD
» Levels 2 and 3 of Data Structure
» Adapting Binary Search for Best-Matching Prefix
» Precomputed 16-Bit Prefix Table Multiway Binary Search: Exploiting the Cache Line
» Lookup Algorithms and Data Structure Construction
» Prefix Update Algorithms IP ROUTE LOOKUPS USING TWO-TRIE STRUCTURE
Show more