3.4. Teori Fuzzy
Setiadji 2009 menyatakan bahwa logika fuzzy memberikan solusi praktis dan ekonomis untuk mengendalikan sistem yang kompleks. Logika fuzzy
memberikan rangka kerja yang kuat dalam memecahkan banyak masalah pengontrolan. Aturan dasar logika fuzzy tidak membutuhkan model matematis yang
kompleks untuk mengoperasikannya, yang dibutuhkan adalah pemahaman praktis dan teoritis dari perilaku sistem keseluruhan. Untuk menghitung derajat yang tak
terbatas jumlahnya antara benar dan salah, Zadeh mengembangkan ide penggologan himpunan yang dinamakan himpunan samar fuzzy. Tidak seperti
logika Boolean, logika fuzzy memiliki banyak nilai. Tidak seperti elemen yang dikategorikan 100 ini atau itu, atau sebuah dalil yang menyatakan semuanya
benar atau seluruhnya salah, fuzzy membaginya dalam derajat keanggotaan dan derajat kebenaran, yaitu sesuatu yang dapat menjadi sebagian benar dan sebagian
salah pada waktu yang sama. Logika fuzzy memberikan metode ketepatan yang dapat diandalkan dari persoalan pengambilan keputusan tegas pasti crisp.
3.4.1. Fuzzifikasi dan Fungsi Keanggotaan
Langkah pertama daam memproses logika fuzzy memuat transformasi domain yang dinamakan fuzzifikasi. Masukan crisp ditransformasikan kedalam masukan
fuzzy tingkat keanggotaan atau tingkat kebenaran. Untuk mengubah bentuk masukan crisp ke dalam masukan fuzzy, fungsi keanggotaan pertama kali harus
ditentukan untuk tiap masukan. Sekali fungsi keanggotaan ditentukan, fuzzifikasi mengambil nilai masukan derajat keanggotaan derajat kebenaran secara realtime
Universitas Sumatera Utara
dan membandingkan dengan informasi fungsi keanggotaan yang tersimpan untuk menghasilkan nilai masukan fuzzy.
Gambar 3.2. Proses Fuzzifikasi
Keluaran fuzzy juga mempunyai fungsi keanggotaan. Bentuk fungsi keaggotaan mempengaruhi proses fuzzy. Sebagai contoh, bentuk fungsi
mempengaruhi secara langsung waktu dan ruang yang dibutuhkan pada saat mengejutkan fuzzifikasi dan defuzzifikasi. Fungsi keanggotaan dapat menggambil
beberapa bentuk berbeda. Bentuk trapezoid dan segitiga adalah yang paling sering digunakan dalam praktik. Meskipun bentuk yang lain mungkin saja lebih mewakili
fenomena alam yang terjadi.
3.4.2. Defuzzifikasi
Metode penegasan defuzzifikasi digunakan untuk menghasilkan nilai variabel solusi yang diinginkan dari suatu daerah konsekuen samar fuzzy.
Masukkan Fungsi Keanggotaan 1
Fuzzifikasi 2 Masukkan Crisp 3
Fuzzy InputTingkat KebenaranDerajat
Keanggotaan
Universitas Sumatera Utara
Pemilihan fungsi penegasan defuzzifikasi biasanya ditentukan oleh beberapa kriteria, yaitu:
1. Masuk akal plausibility artinya secara intuitif bilangan tegas Z dapat
diterima sebagai bilangan yang mewakili himpunan samar kesimpulan dari semua himpunan samar keluaran untuk setiap aturan.
2. Perhitungan sederharan computational simplicity artinya diharapkan
perhitungan untuk menentukan bilangan penegasan kesimpulan dari semua aturan adalah sederhana.
3. Kontinyuitas continuity diartikan perubahan kecil pada himpunan samar
kesimpulan tidak menghabiskan perubahan besar pada bilangan penegasan.
3.4.3. Fuzzy Analytical Hierarchy Process