Invers penjumlahan Bilangan Bulat

32 Dibuktikan dengan metode pembuktian langsung. Misalkan dan merupakan sebarang bilangan bulat genap. Akan dibuktikan bahwa merupakan bilangan bulat genap. Menurut definisi bilangan genap, dan untuk dan sebarang anggota bilangan bulat. Maka Misalkan . Perhatikan bahwa jelas merupakan bilangan bulat karena adalah hasil penjumlahan bilangan-bilangan bulat. Sehingga bentuk dapat dituliskan sebagai , dengan merupakan bilangan bulat. Karena , maka sesuai dengan definisi bilangan genap hasil penjumlahan juga bilangan genap. Dengan demikian terbukti bahwa hasil penjumlahan dua bilangan bulat genap merupakan bilangan bulat genap. b. Buktikan bahwa hasil perkalian dua bilangan bulat ganjil juga merupakan bilangan bulat ganjil. Coba Anda buktikan, sebagai acuan bahwa m suatu bilangan ganjil jika , untuk suatu bilangan bulat. c. Buktikan bahwa hasil penjumlahan bilangan rasional dan bilangan irrasional merupakan bilangan irrasional. Bukti: Dibuktikan dengan metode kontradiksi. Andaikan hasil penjumlahan bilangan rasional dan bilangan irrasional bukan merupakan bilangan irrasional. Dengan kata lain, hasil penjumlahannya merupakan bilangan rasional. Misalkan terdapat bilangan rasional dan bilangan irrasional sedemikian hingga merupakan bilangan rasional. Menurut definisi bilangan rasional, dan , untuk suatu bilangan bulat dan , dengan dan . Menggunakan substitusi diperoleh 33 Modul PKB Guru Matematika SMA sehingga Perhatikan bahwa bentuk dan , keduanya merupakan bilangan bulat. Mengapa, jelaskan pendapat Anda. Akibatnya merupakan hasil pembagian dua bilangan bulat, dan , dengan . Sehingga menurut definisi bilangan rasional, merupakan bilangan rasional. Hal ini menyebabkan kontradiksi dengan pemisalan awal bahwa merupakan bilangan irrasional. Pengandaian salah. Dengan demikian terbukti bahwa hasil penjumlahan bilangan rasional dan bilangan irrasional merupakan bilangan irrasional.

D. Aktivitas Belajar

LK 1.1. Sistem Bilangan In-1 Kerjankanlah setiap soal secara serius, teliti, dan cermat serta optimalkan kekuatan kerja gotong royong sehingga kerja menjadi lebih ringan dan bermakna kebersamaan. 1. Suatu bilangan dilambangkan dengan sedangkan lawannya dilambangkan dengan . Jika , manakah di antara dan yang merupakan bilangan positif dan manakah di antara dan yang merupakan bilangan negatif 2. Pak Aan tahu bahwa jumlah dari dua bilangan rasional selalu merupakan bilangan rasional. Selanjutnya dia menyimpulkan bahwa jumlah dari dua bilangan irrasional juga selalu merupakan bilangan irrasional. Berikan beberapa contoh yang menunjukkan bahwa kesimpulan Pak Aan salah. Kata hikmah Kekuatan seseorang ditentukan oleh optimasi potensi diri, kontribusi tim dan pertolongan Tuhan maka ambil dan gunakan semua power untuk meraih sukses dalam setiap aktivitas