Saran SIMPULAN DAN SARAN 1 Simpulan

DAFTAR PUSTAKA Aberoumdan A, Deokule SS. 2008. Comparison of phenolic compounds of some edible plants of Iran dan India. Pakistan Journal of Nutrition 7 4: 582-585. Adawayah R. 2008. Pengolahan dan Pengawetan Ikan. Jakarta: Bumi Aksara. [AOAC] Association of Official Analytical Chemist. 2005. Official Methods of Analysis of The Association of Official Analytical Chemist. Arlington, Virginia USA : AOAC Inc. Anonim. 2012. Safety, Quality, and Purity of Surimi. http:www.alaskaseafood.org. Asgharzadeh A, Shabanpour B, Aubourg SP, Hosseini H. Chemical changes in silver carp Hypophthalmichthys molitrix minced muscle during frozen storage: Effect of a previous washing process. Grasas Y Aceites, 611: 95-101. [BSN] Badan Standardisasi Nasional. 2006a. Surimi Beku, Bagian 1: Spesifikasi SNI-01-2694.1-2006. Jakarta : BSN. [BSN] Badan Standardisasi Nasional. 2006b. Petunjuk Pengujian Organoleptik dan atau Sensori SNI-01-2346-2006. Jakarta : BSN. Bajaj KL, Devsharma AK. 1977. A colorimetric method for the determination of tannin in tea. Mikrochimica Acta 2: 249-253. Balange AK. 2009. Enhancement of gel strength of surimi using oxidized phenolic compound [disertasi]. Tambon Ruesamilae, Thailand : Food Science dan Technology Prince of Songkla University. Balange AK, Benjakul, S. 2009a. Enhancement of gel strength of bigeye snapper Priacanthus tayenus surimi using oxidised phenolic compounds. Food Chemistry 113: 61–70. Balange A, Benjakul S. 2009b. Effect of oxidised phenolic compounds on the gel property of mackerel Rastrelliger kanagurta surimi. Food Science and Technology 42: 1059–1064. Balange A, Benjakul S. 2009c. Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types dan setting temperatures. Food Chemistry 120: 268–277. Banlue K, Morioka K, Itoh Y. 2010. Effect of inorganic oxidizing reagents on gel- forming properties of walleye pollack surimi through low temperatur setting. Journal of Biological Science 101: 18-24. Barrangou L. 2005. Sensory texture and fundamental rheology of agar and agarose gels [disertasi]. North Caroline: Graduate Faculty of North Caroline State University. Beecher GR, Warden BA, Merke H. 1999. Analysis of tea polyphenols. Proceedings of the Society for Experimental Biology and Medicine 220: 267-270. Benjakul S, Visessanguan W, Riebroy S, Ishizaki S, Tanaka M. 2002. Gel forming properties of big eye snapper Priachanthus tayenus and Priachanthus macrocanthus stored in ice. Journal of The Science of Food and Agricultural 82: 1442-1451. Benjakul S, Chantarasuwan C, Visessanguan W. 2003. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish. Food Chemistry 82: 567–574. Benjakul S, Visesanguan W, Thongkaew C, Tanaka M. 2005. Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand. Food Hidrocolloids 19: 197-207. Berkel BM, Boogaard B, Heijnen C, editor. 2004. Preservation of Fish and Meat. Ed ke-3. Wageningen, Netherland : Agromisa Foundation. Bourne MC. 2002. Food Texture and Viscosity: Concept and Measurement Second Edition. New York: Academic Press An Elsevier Science Imprint. Briones AH, Velazquez G, Vazquez M, Ramirez JA. 2009. Effects of adding fish gelatin on Alaska pollock surimi gels. Food Hydrocolloids 23: 2446–2449. Cabrera C, Gimenez R, Lopez MC. 2003. Determination of tea components with antioxidant activity. Journal Agricultural Food Chemistry 51: 4427-4435. Caine WR, Aalhus JL, Best D, Dugan MER, Jeremiah LE. 2003. Relationship of texture profile analysis and warner-bratzler shear force with sensory characteristics of beef rib steaks. Meat Science 64: 333-339. Cao MJ, Jiang XJ, Zhong HC, Zhang ZJ, Su WJ. 2006. Degradation of myo fibrillar proteins by a myofibril-bound serine proteinase in the skeletal muscle of crucian carp Carasius auratus . Food Chemistry 94: 7-13. Chairita. 2008. Karakteristik bakso ikan dari campuran surimi ikan layang Decapterus Spp. dan ikan kakap merah Lutjanus Sp. pada penyimpanan suhu dingin [tesis]. Bogor: Program Pascasarjana, Institut Pertanian Bogor. Chaijan M, Benjakul S, Visessanguan W, Faustman C. 2004. Characteristics and gel properties of muscles from sardine Sardinella gibbosa and mackerel Rastrelliger kanagurta caught in Thailand. Food Research International 37: 1021–1030. Chen S, Wang X, Zhou Fukuda Y. 2001. Effect of freshness of iced silver carp Hypophthalmichthy molurix on gel formation. Di dalam: Fukuda Y, Wang X, Yokoyama M, Maeda M, editor. Development of Technology for Utilization and Processing of Freshwater Fisheries Resources. Proceeding of The Japan dan China Joint Workshop; Shanghai, China 25-26 Maret 1999. Jepang: Japan Internasional Research Center for Agricultural Science. hlm 113-122. Cueto BT, Luis M, Esquivel JCC, Rodríguez R. 2007. Gallic acid and tannase accumulation during fungal solid state culture of a tannin-rich desert plant Larrea tridentata Cov.. Bioresource Technology 98: 721–724. Direktorat Jenderal Perikanan Budidaya Kementerian Kelautan dan Perikanan. 2009. Produksi Budidaya tahun 2009. http:www.perikanan- budidaya.kkp.go.i. 25 Februari, 2011 Eakpetch P, Benjakul S, Visessanguan W, Kijroongrojana K. 2008. Effect of protein additives on gelling properties of pacific white shrimp Litopenaeus vannamei meat. ASEAN Food Journal 15 1: 65-72. Elyasi A, Abadi ZR, Sahari MA, Zare P. 2010. Chemical and microbial changes of fish fingers made from mince and surimi of common Carp Cyprinus carpio L., 1758. International Food Research Journal 17: 915-920. Ersoz E, Kinik O, Yerlikaya O, Acu M. 2011. Effect of phenolic compounds on characteristics of strained yoghurts produced from sheep milk. African Journal of Agricultural Research 6 23: 5351-5359. Erturk Y, Ercisli S, Sengul M , Eser Z, Haznedar A, Turan M. 2010. Seasonal variation of total phenolic, antioxidant activity and minerals in fresh tea shoots Camellia sinensis var. sinensis. Pakistan Journal Pharmacy Science 231: 69-74. Fahey GC, Berger LL. 1988. Carbohydrate nutrition of ruminants. Di dalam : Church DC, editor. Digestive Phisiology and Nutrition of Ruminant, The Ruminant Animal. New Jersey: Prentice Hall, Englewood Cliffs. Foegeding EA, Davis JP. 2011. Food protein functionality : a comprehensive approach. Food Hydrocolloid 30: 1-12. Forrest JC, Aberle EB, Hedrick HB, Judge MD, Merkel RA. 1975. Principles of Meat Science. San Fransisco: W.H. Freeman and Co. Fukuda Y, Chen S, Cheng Y, Wang X, Zhou L, Zhang D, Yuan C. 2001. Development of frozen surimi from freshwater fish meat produced in China. Di dalam : Fukuda Y, Wang X, Yokoyama M, Maeda M, editor. Development of Technology for Utilization and Processing of Freshwater Fisheries Resources. Proceeding of the Japan and China Joint Workshop; Shanghai, 25-26 Maret 1999. hlm 103-112. Hadiwiyoto S. 1993. Dasar-dasar Teknologi Hasil Perikanan. Yogyakarta: Liberty. Honikel KO, Hamm. 1994. Measurement of water holding capacity and juiceness. Di dalam: Pearson AM, Dutson TR, editor. Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. Ed ke-9. Inggris: Blackie Academic Professional Glasgow. Hossain MI, Kamal MM, Shikha FH, Hoque MdS. 2004. Effect of washing dan salt concentration on the gel forming ability of two tropical fish species. International Journal of Agriculture dan Biology 6 5: 762–766. Hossain MI, Kamal MM, Sakib MN, Shikha FH, Neazuddin, Islam MN. 2005. Influence of ice storage on the gel forming ability, miofibril protein solubility and Ca 2+ - ATPase activity of queen fish Chorinemus lysan Journal of Biology Science 5 4 : 519-524. Hustiany R. 2005. Karakteristik produk olahan kerupuk dan surimi dari daging ikan patin Pangasius sutch hasil budidaya sebagai sumber protein hewani. Media Gizi Keluarga 29 2: 66-74. Hutajulu FT, Hartanto ES, Subagja. 2008. Proses ekstraksi zat warna hijau khlorofil alami untuk pangan dan karakterisasinya. Jurnal Riset Industri 2 1: 44-55. Ismail I, Huda N, Ariffin F, Ismail N. 2010. Effect of washing on the functional properties of duck meat. International Journal of Poultry Science 9 6: 556-561. Jiang XJ, Zhang ZJ, Cai HN, Hara K, Su WJ, Cao MJ. 2006. The effect of soybean tripsin inhibitor on the degradation of myofibrillar protein by an endogenous serine proteinase of crucian carp. Food Chemistry 94: 498-503. Jin SK, Kim IS, Kim SJ, Jeong KJ, Choi YJ, Hur SJ. 2007. E ffect of muscle type and washing times on physico-chemical characteristics and qualities of surimi. Journal of Food Engineering 81: 618–623. Julavittayanukul O, Benjakul S, Visessanguan W. 2006. Effect of phosphate compounds on gel-forming ability of surimi from bigeye snapper Priacanthus tayenus. Food Hydrocolloids 20: 1153–1163. Karthikeyan M, Shamasundar BA, Mathew S, Kumar PR, Prakash V. 2004. Physico- chemical and functional properties of protein from pelagic fatty fish Sardinella longicep as function of water washing. International Journal of Food Properties 7 3: 353-365. Karthikeyan M, Dileep AO, Shamasundar BA. 2006. Effect of water washing on the functional and rheological properties of proteins from threadfin bream Nemipterus japonicus meat. International Journal of Food Science and Technology 41: 1002–1010. [KKP] Kementerian Kelautan dan Perikanan. 2011. Data Indikator Kinerja Umum Kelautan dan Perikanan Tahun 2010. Jakarta: Pusat Data Statistika dan Informasi Kementerian Kelautan dan Perikanan. Kim TJ, Silva JL, Kim MK, Jung YS. 2010. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chemistry 118: 740–746. Kim BY, Park JW. 2000. Rheologi and texture properties of surimi gels. Di dalam : Park JW, editor. Surimi dan Surimi Seafood. New York: Marcell Decker Inc. hlm 267-324. King MW. 2011. Muscle Biochemistry: Structure and Function. www.themedicalbiochemistrypage.org. 20 Desember 2011 Kong CS, Ogawa H, Iso N. 1999. Compression properties of fish meat gel as affected by gelatinization of added starch. Journal of Food Science 64 2: 283-286. Kroll J, Rawel HM. 2001. Reactions of plant phenols with myoglobin: influence of chemical structure of the phenolic compounds. Journal of Food Science: Food Chemistry and Toxicology 66 1: 48-58. Laksono UT. 2012. Produksi transglutaminase dari Streptoverticillium ladakanum dengan media alternatif yang mengandung hidrolisat limbah cair pengolahan surimi dan tepung tapioka [tesis]. Bogor: Program Pascasarjana, Institut Pertanian Bogor. Lanier TC. 1992. Measurement of surimi composition and functional properties. Di dalam: Lanier TC, Lee CM, editor. Surimi Technology. New York: Marcel Dekker, Inc. hlm 123-163. Lanier TC. 2000. Surimi gelation chemistry. Di dalam: Park JW, editor. Surimi and Surimi Seafood. New York: Marcell Decker Inc. hlm 237-265. Lantto R. 2007. Protein cross-linking with oxidative enzymes and transglutaminase, effects in meat protein systems [disertasi]. Finlandia: Faculty of Agriculture and Forestry, University of Helsinki. Lattanzio V, Lattanzio VMT, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Di dalam : Imperato F, editor. Phytochemistry: Advances in Research. Kerala: Research Signpost. hlm 23-67. Lattanzio V, Cardinali A, Linsalata V. 2012. Plant phenolics: a biochemical and physiological perspective. Di dalam: Cheynier V, editor. Recent Advances in Polyphenol Research, Volume 3, Ed ke-1. New York: John Wiley Sons, Ltd. hlm 1-40. Li X, Xia W. 2010. Effect of chitosan on the gel properties of salt soluble meat protein from silver carp. Carbohydrate Polymer 82: 958-964. Liu R, Zhao S, Liu Y, Yang H, Xiong S, Xie B, Qin L. 2010. Effect of pH on the gel properties and secondary structure of fish myosin. Food Chemistry 120: 196-202. Lonergan EH, Lonergan SM. 2005. Review : Mechanisms of water holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Science 71: 194–204. Lu MJ, Chu SC, Yan L, Chen C. 2009. Effect of tannase treatment on protein tannin aggregation and sensory attributes of green tea infusion. LWT-Food Science and Technology 42: 338–342. Luo YK, Kuwahara R, Kaneniwa M, Murata Y, Yokoyama, M. 2001. Comparison of gel properties of surimi from alaska pollock dan three freshwater fish species: Effects of thermal processing dan protein concentration. Journal of Food Science 66 3: 548-554. Luo Y, Shen H, Pan D, dan Bu,G. 2008. Gel properties of surimi from silver carp Hypophthalmichthys molitrix as affected by heat treatment dan soy protein isolate. Food Hydrocolloids 22: 1513–1519. Malayandi RD. 2009. Antioxidant activity of Sabah tea leaves [tesis]. Sabah, Malaysia: School of Food Science and Nutrition, Universiti Malaysia Sabah. Maqsood S, Benjakul S. 2010a. Synergistic effect of tannic acid and modi fied atmospheric packaging on the prevention of lipid oxidation and quality losses of refrigerated striped cat fish slices. Food Chemistry 121: 29–38. Maqsood S, Benjakul S. 2010b. Preventive effect of tannic acid in combination with modi fied atmospheric packaging on the quality losses of the refrigerated ground beef. Food Control 21: 1282–1290. Maqsood S, Benjakul S, Balange AM. 2012. Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage. Food Chemistry 130: 408–416. Margolang A. 2009. Pembesaran Ikan Lele Dumbo Clarias gariepinus. http:www.bbat-sukabumi.tripod.com. 7 Desember 2010. Markham KR, Bloor SJ. 1998. Analysis and identification of flavonoids in practice. Di dalam: Evan CAR, Packer L, editor. Flavonoids in Health and Diasease. New York: Marcell Decker Inc. hlm 1-33. Matsumoto JJ, Noguchi SF. 1992. Cryostabilization of protein in surimi. Di dalam: Lanier TC, Lee CM, editor. Surimi Technology. New York: Marcel Dekker, Inc. hlm 357-387. Mayes PA, Bender DA. 2003. Carbohydrates of physiologic significance. Di dalam: Murray RK, Granner DK, Mayes PA, Rodwell VW, editor. Harper’s Illustrated Biochemistry. Ed ke-26. USA: The McGraw-Hill Companies, Inc. hlm 102-110. Michalak A. 2006. Review : Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environment Study 15 4: 523-530. Mochizuki Y. 2001. Texture Profile Analysis Current Protocols in Food Analytical Chemistry. California : John Willey and Sons Inc. Mohammed MI, Sulaiman MA. 2009. Proximate, caffeine and tannin analyses in some brands of tea consumed in Kano Metropolis, Nigeria. Bayero Journal of Pure and Applied Sciences 22: 19 – 21. Monteleone E, Condelli N, Dinnella C, Bertuccioli M. 2004. Prediction of perceived astringency induced by phenolic compounds. Food Quality and Preference 15:761–769. Nakai S, Modler HW. 2000. Food Protein, Processing Applications. USA: Wiley- VCH inc. Nopianti R, Huda N, Ismail N. 2011. A review on the lost functional properties of protein during frozen storage and the improvement of gel forming properties of surimi. American Journal of Food Technology 61: 19-30. Nurjanah, Abdullah A, Kustiariyah. 2011. Bahan Baku Hasil Perairan. Bogor : IPB Press. Nyachoti CM, Atkinson JL, Leeson S. 1997. Shorgum tannin : a review. World Journal Poultry Science 53: 5-21. Osibona AO, Kusemiju K, Akande GR. 2009. Fatty acid composition and amino acid profile of two freshwater species. African catfish Clarias gariepinus and tilapia Tilapia zilii. African Journal of Food, Agriculture, Nutrition and Development 9 1: 608-617. Olayemi FF, Adedayo MR, Bamishaiye EI, Awagu EF. 2011. Proximate composition of catfish Clarias gariepinus smoked in Nigerian stored products research institute NSPRI: Developed kiln. International Journal of Fisheries and Aquaculture 35: 96-98. Otero MAI, Borderias J, Tovar CA. 2010. Use of konjac glucomanan as additive to reinforce the gels from low quality squid surimi. Journal of Food Enginering 101: 281-288. Park JW, Morrissey MT. 2000. Manufacturing of surimi from light muscle fish. Di dalam: Park JW, editor. Surimi and Surimi Seafood. New York: Marcell Decker Inc. hlm 23-58. Park JW. 2000. Ingredient technology and formulation development. Di dalam: Park JW, editor. Surimi and Surimi Seafood. New York: Marcell Decker Inc. hlm 343-391. Pattaravivat J, Marioka K, Shirosaki M, Itoh Y. 2008. Effect of washing condition on the removal of lipid from the fatty fish escolar Lepidocybium flavobrunneum Meat. Journal of Biological Science 81: 34-42. Phatcharat S, Benjakul S, Visessanguan W. 2006. Effects of washing with oxidising agents on the gel-forming ability dan physicochemical properties of surimi produced from bigeye snapper Priacanthus tayenus. Food Chemistry 98: 431–439. Prihatman K. 2000. Budidaya Ikan Lele. Proyek Pengembangan Ekonomi Pedesaan, BAPPENAS. Menegristek Bidang Pendayagunaan dan Pemasyarakatan Ilmu Pengetahuan dan Teknologi, Jakarta. www.ristek.go.id. 23 Juli 2011 Rahayu WP. 2001. Penuntun Praktikum Penilaian Organoleptik. Bogor: Fakultas Teknologi Pertanian IPB. Ramadhan K, Huda N, Ahmad R. 2011. Physico-chemical characteristics of surimi gels made from washed and mechanically deboned Peking duck meat. Asian Journal of Food and Agro-Industry 4 02: 114-121. Ramirez JA, Sosa RR, Morales OG, Vazqueza M. 2003. Preparation of surimi gels from striped mullet Mugil cephalus using an optimal level of calcium chloride. Food Chemistry 82: 417–423. Rasekh JG, Waters ME, Sidwell VD. 1980. The effect of washing on the quality characteristics of minced fresh croaker, Micropogon undulatus, held in frozen storage. Marine Fisheries Review 1: 26-30. Rehman S, Almas K, Shahzadi N, Bhatti N, Saleem A. Effect of time and temperature on infusion of tannins from commercial brands of tea. International Journal of Agriculture and Biology 4 2: 285-287. Ren J, Wang H, Zhao M, Cui C, Hu X. 2010. Enzymatic hydrolysis of grass carp miofibril protein and antioxidant properties of hydrolysates. Czech Journal Food Science 28 6: 475-484. Richardson JM. 1999. Comparison of surimi and solubilized surimi for kamaboko production from farm chinock salmon [tesis]. Vancouver, Canada: Departemen of Food Science, Faculty of Graduate Studies, British Columbia University. Rispail N, Morris P, Webb JK. 2005. Phenolic Compound: Extraction dan Analysis. Jepang: Lotus japonicas handbook. Rivero S, Garcia MA, Pinotti A. 2010. Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate Polymers 82: 270–276. Rodwell VW, Kennelly PJ. 2003. Structures and functions of proteins and enzymes, amino acids and peptide. Di dalam: Murray RK, Granner DK, Mayes PA, Rodwell VW, editor. Harper’s Illustrated Biochemistry. Ed ke-26. USA: The McGraw-Hill Companies, Inc. Hlm 14-20. Sang S, Tian S, Wang H, Stark RE, Rosen RT, Yang CS, Ho CT. 2003. Chemical studies of the antioxidant mechanism of tea catechins : radical reaction products of epicatechin with peroxyl radical. Journal Bioorganic Medical Chemistry 1:3371-3378. Santoso J, Yoshie Stark Y, Suzuki T. 2004. Anti-oxidant activity of metanol extracts from Indonesian seaweeds in an oil emulsion model. Fisheries Science 70: 183-188. Saxena DK, Sharma SK, Shambi SS. 2011. Comparative extraction of cottonseed oil by n-hexane and etanol. Journal of Enginering and Applied Science 6 1: 84-89. Shahidi F, Botta JR. 1994. Seafood Chemistry, Processing Technology dan Quality. London: Blackie Academic and Professional, Chapman and Hall. Shukla Y. 2007. Tea and cancer chemoprevention: a comprehensive review. Asian Pacific Journal of Cancer Prevention 8: 155-156. Stankovic MS, Niciforovic N, Topuzovic M, Solujic S. 2011. Total phenolic content, flavonoid concentrations and antioxidant activity of the whole plant and plant parts extracts from Teucrium montanum l. Var. Montanum, f. Supinum l. Reichenb. Biotechnology and Biotechnological Equipment 25 1: 2222-2227. Steel RGD, Torrie JH. 1991. Prinsip dan Prosedur Statistika. Sumantri B, penerjemah. Jakarta: PT Gramedia Pustaka Utama. Terjemahan dari: Principles and Procedures of Statistics. Sundari D, Nuratmi B, Winarno MW. 2009. Toksisitas akut LD50 dan uji gelagat ekstrak daun teh hijau Camelia sinensis Linn Kunze pada mencit. Media Penelitian dan Pengembangan Kesehatan 9 4: 198-203. Suyanto SR. 1999. Budidaya Ikan Lele. Jakarta: Penebar Swadaya Suzuki T. 1981. Fish dan Krill Protein in Processing Technology. London: Applied Science Publishing Ltd. Szczesniak AS. 2002. Texture is a sensory property. Food Quality and Preference 13:215-225. Tadpitchayangkoon P, Park JW, Yongsawatdigul J. 2010. Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs. Food Chemistry 121: 1046-1052. Tanuwiria UH. 2007. Proteksi tepung ikan oleh berbagai sumber tanin dan pengaruhnya terhadap fermentabilitas dan kecernaannya in vitro. Jurnal Agroland 14: 56-60. Urest RM, Arias NL, Ramírez JA, Vazquez M. 2003. Effect of amidated low methoxyl pectin on fish mince. Food Technology and Biotechnology 412: 131–136 . Vermerris W, Nicholson R. 2009. Phenolic Compound Biochemistry. USA: Springer Science Business Media B.V. Wahyuni M. 1992. Sifat kimia dan fungsional ikan hiu lanyam Carcharhinus limbatus serta penggunaannya dalam pembuatan sosis [tesis]. Bogor : Program Pascasarjana, IPB. Walukonis CJ, Morgan MT, Gerrard DE, Forrest JC. 2002. A Technique for Predicting Water-Holding Capacity in Early Postmortem Muscle. Purdue University, USA: Swine Research Report. Wang PA. 2011. Post mortem proteolytic degradation of myosin heavy chain in skeletal muscle of Atlantic cod [disertasi]. Norwegia : University of Tromso, Faculty of Biosciences, Fisheries and Economics. Wang X, Hiraoka Y, Narita K, Joh A, Fukuda Y, Oka H, Sakaguchi M. 2001. Characteristics of surimi and kamaboko made from Japanese Common Carp. Di dalam: Fukuda Y, Wang X, Yokoyama M, Maeda M, editor. Development of Technology for Utilization and Processing of Freshwater Fisheries Resources. Proceeding of The Japan dan China Joint Workshop; Shanghai, China 25-26 Maret 1999. Jepang: Japan Internasional Research Center for Agricultural Science. hlm 87-102. Widianingsih. 2007. Evaluasi senyawa fenolik asam ferulat dan asam -kumarat pada biji, kecambah dan tempe kacang tunggak Vigna unguiculata [skripsi]. Bogor : Fakultas Pertanian Institut Pertanian Bogor. Xiong G, Cheng W, Ye L, Du X, Zhou M, Lin R, Geng S, Chen M, Corke H, Chai YZ. 2009. Effects of konjac glucomannan on physicochemical properties of myo fibrillar protein and surimi gels from grass carp Ctenopharyngodon idella. Food Chemistry 116: 413–418. Yongsawatdigul J, Sinsuwan S. 2007. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting. Food Hydrocolloids 21: 359 – 367. Zayas JF. 1997. Functionality of Protein in Food. New York: Springer. LAMPIRAN Lampiran 1. Score Sheet Organoleptik Ikan Segar SNI 01-2346-2006 Nama Panelis : ..................................... Tanggal: .........................  Cantumkan kode contoh pada kolom yang tersedia sebelum melakukan pengujian  Berilah tanda √ pada nilai yang dipilih sesuai kode contoh yang diuji. Spesifikasi Nilai Kode contoh 1 2 3 4 A Kenampakan 1 Mata • Cerah, bola mata menonjol, kornea jernih. 9 • Cerah, bola mata rata, kornea jernih. 8 • Agak cerah, bola mata rata, pupil agak keabu-abuan, kornea agak keruh. 7 • Bola mata agak cekung, pupil berubah keabu-abuan, kornea agak keruh. 6 • Bola mata agak cekung, pupil keabu-abuan, kornea agak keruh. 5 • Bola mata cekung, pupil mulai berubah menjadi putih susu, kornea keruh. 3 • Bola mata sangat cekung, kornea agak kuning. 1 2 Insang • Warna merah cemerlang, tanpa lendir. 9 • Warna merah kurang cemerlang, tanpa lendir. 8 • Warna merah agak kusam, tanpa lendir. 7 • Merah agak kusam, sedikit lendir. 6 • Mulai ada perubahan warna, merah kecoklatan, sedikit lendir, tanpa lendir. 5 • Warna merah coklat, lendir tebal. 3 • Warna merah coklat ada sedikit putih, lendir tebal 1 3 Lendir Permukaan Badan • Lapisan lendir jernih, transparan, mengkilat cerah. 9 • Lapisan lendir jernih, transparan, cerah, belum ada perubahan warna. 8 • Lapisan lendir mulai agak keruh, warna agak putih, kurang transparan. 7 • Lapisan lendir mulai keruh, warna putih agak kusam, kurang transparan 6 • Lendir tebal menggumpal, mulai berubah warna putih, keruh. 5 • Lendir tebal menggumpal, berwarna putih kuning. 3 • Lendir tebal menggumpal, warna kuning kecoklatan 1 Spesifikasi Nilai Kode contoh 1 2 3 4 4 Daging warna dan kenampakan. • Sayatan daging sangat cemerlang, spesifik jenis, tidak ada pemerahan sepanjang tulang belakang, dinding perut daging utuh. 9 • Sayatan daging cemerlang spesifik jenis, tidak ada pemerahan sepanjang tulang belakang, dinding perut utuh. 8 • Sayatan daging sedikit kurang cemerlang, spesifik jenis, tidak ada pemerahan sepanjang tulang belakang, dinding perut daging utuh. 7 • Sayatan daging mulai pudar, banyak pemerahan sepanjang tulang belakang, dinding perut agak lunak. 5 • Sayatan daging kusam, warna merah jelas sekali sepanjang tulang belakang, dinding perut lunak. 3 • Sayatan daging kusam sekali, warna merah jelas sekali sepanjang tulang belakang, dinding perut sangat lunak. 1 5 Bau • Bau sangat segar, spesifik jenis. 9 • Segar, spesifik jenis. 8 • Netral. 7 • Bau amoniak mulai tercium, sedikit bau asam. 5 • Bau amoniak kuat, ada bau H 2 S, bau asam jelas dan busuk. 3 • Bau busuk jelas. 1 6 Tekstur • Padat, elastis bila ditekan dengan jari, sulit menyobek daging dari tulang belakang. 9 • Agak padat, elastis bila ditekan dengan jari, sulit menyobek daging dari tulang belakang. 8 • Agak padat, agak elastis bila ditekan dengan jari, sulit menyobek daging dari tulang belakang. 7 • Agak lunak, kurang elastis bila ditekan dengan jari, agak mudah menyobek daging dari tulang belakang. 5 • Lunak, bekas jari terlihat bila ditekan, mudah menyobek daging dari tulang belakang. 3 • Sangat lunak, bekas jari tidak hilang bila ditekan, mudah sekali menyobek daging dari tulang belakang. 1 Lampiran 2a Analisis ragam kadar air surimi Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 82,9382125 3 27,646071 32174,653 6,591382 Galat 0,003437 4 0,00086 Total 82,9416495 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 2b Uji beda kadar air surimi BNJ = q αp,dbg  ktgn 5,76 x  0,000862 0,119 Perlakuan Pencucian 3 Pencucian 2 Pencucian 4 Pencucian 1 82,27 78,59 76,11 73,54 Pencucian 3 82,27 - Pencucian 2 78,59 3,67 - Pencucian 4 76,11 6,16 2,49 - Pencucian 1 73,54 8,73 5,05 2,57 - Keterangan : tanda menunjukkan perbedaan nyata Lampiran 2c Analisis ragam kadar air kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 172,4640 3 57,488 48915,544 6,591 Galat 0,0047 4 0,001 Total 172,4687 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata. Lampiran 2d Uji beda kadar air kamaboko BNJ = q αp,dbg  ktgn 5,76 x  0,00122 0,140 Pencucian 3 Pencucian 4 Pencucian 2 Pencucian 1 Perlakuan 79,62 76,74 72,40 67,32 Pencucian 3 79,62 - Pencucian 4 76,74 2,88 - Pencucian 2 72,40 7,22 4,34 - Pencucian 1 67,32 12,30 9,42 5,08 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 3a Analisis ragam kadar protein surimi Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 59,626 3 19,875 170,174 6,591 Galat 0,467 4 0,117 Total 60,094 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 3b Uji beda kadar protein surimi BNJ = q αp,dbg  ktgn 5,76 x 0,11682 1,392 Pencucian 1 Pencucian 4 Pencucian 2 Pencucian 3 19,51 16,86 15,14 11,99 Pencucian 1 19,51 - Pencucian 4 16,86 2,65 - Pencucian 2 15,14 4,37 1,73 - Pencucian 3 11,99 7,52 4,87 3,15 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 3c Analisis ragam kadar protein kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 121,639 3 40,546 462,633 6,591 Galat 0,351 4 0,088 Total 121,989 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 3d Uji beda kadar protein kamaboko BNJ = q αp,dbg  ktgn 5,76 x  0,08762 1,206 Pencucian 1 Pencucian 2 Pencucian 4 Pencucian 3 21,77 17,77 14,09 11,41 Pencucian 1 21,77 - Pencucian 2 17,77 4,00 - Pencucian 4 14,09 7,68 3,68 - Pencucian 3 11,41 10,36 6,35 2,67 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 4a Analisis ragam kadar lemak surimi Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 2,772 3 0,924 6,440 6,591 Galat 0,574 4 0,143 Total 3,346 7 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata Lampiran 4b Analisis ragam kadar lemak kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 10,551 3 3,517 115,964 6,591 Galat 0,121 4 0,030 Total 10,673 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 4c Uji beda kadar lemak kamaboko BNJ = q αp,dbg  ktgn 5,76 x  0,03032 0,709 Pencucian 1 Pencucian 2 Pencucian 4 Pencucian 3 6,39 4,64 3,83 3,39 Pencucian 1 6,39 - Pencucian 2 4,64 1,75 - Pencucian 4 3,83 2,57 0,82 - Pencucian 3 3,39 3,00 1,25 0,44 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 5a Analisis ragam kadar abu surimi Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 0,725 3 0,242 14,771 6,591 Galat 0,065 4 0,016 Total 0,791 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 5b Uji beda kadar abu surimi BNJ = q αp,dbg  ktgn 5,76 x  0,01642 0,521 Pencucian 4 Pencucian 1 Pencucian 2 Pencucian 3 0,97 0,51 0,38 0,14 Pencucian 4 0,97 - Pencucian 1 0,51 0,46 - Pencucian 2 0,38 0,59 0,13 - Pencucian 3 0,14 0,83 0,37 0,24 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 5c Analisis ragam kadar abu kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 0,817 3 0,272 1,602 6,591 Galat 0,680 4 0,170 Total 1,497 7 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata Lampiran 6a Analisis ragam kadar karbohidrat surimi Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 2,0387 3 0,680 5,563 6,591 Galat 0,4886 4 0,122 Total 2,5273 7 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata Lampiran 6b Analisis kadar karbohidrat kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 1,8522 3 0,6174 1,4930 6,5914 Galat 1,6541 4 0,4135 Total 3,5063 7 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata Lampiran 7a Analisis ragam pH surimi Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 0,01403 3 0,0047 1,7877 4,066 Galat 0,02093 8 0,0026 Total 0,03497 11 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata Lampiran 7b Analisis ragam pH kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 0,1678 3 0,0559 8,3495 4,0662 Galat 0,0536 8 0,0067 Total 0,2214 11 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 7c Uji beda pH kamaboko BNJ = q αp,dbg  ktgn 4,53 x  0,00673 0,214 Pencucian 4 Pencucian 2 Pencucian 3 Pencucian 1 7,073 6,950 6,943 6,743 Pencucian 4 7,073 - Pencucian 2 6,950 0,123 - Pencucian 3 6,943 0,130 0,007 - Pencucian 1 6,743 0,330 0,207 0,200 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 8a Analisis ragam water holding capacity WHC kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 435,0284221 3 145,009474 31,54760729 4,066181 Galat 36,7722275 8 4,596528437 Total 471,8006496 11 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 8b Uji beda water holding capacity WHC kamaboko BNJ = q αp,dbg  ktgn 4,53 x  4,59653 5,607 Pencucian 3 Pencucian 4 Pencucian 2 Pencucian 1 64,85 64,14 57,33 49,97 Pencucian 3 64,85 - Pencucian 4 64,14 0,71 - Pencucian 2 57,33 7,52 6,81 - Pencucian 1 49,97 14,88 14,17 7,36 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 9a Analisis ragam expressible moisture content EMC kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 55,83037649 3 18,6101255 11,162 4,066 Galat 13,3385348 8 1,66731685 Total 69,1689113 11 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 9b Uji beda expressible moisture content EMC kamaboko BNJ = qαp,dbg  ktgn 4,53 x  1,6673 4,294 Pencucian 1 Pencucian 2 Pencucian 3 Pencucian 4 12,119 12,978 11,142 7,330 Pencucian 1 12,119 - Pencucian 2 12,978 0,859 - Pencucian 3 11,142 0,977 1,836 - Pencucian 4 7,330 4,789 5,648 3,812 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 10 Analisis ragam protein larut garam Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 0,791354401 3 0,2637848 0,388888889 4,066181 Galat 5,426430176 8 0,678303772 Total 6,217784576 11 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata. Lampiran 11a Analisis ragam deformasi kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 32,290 3 10,763 8,567 6,591 Galat 5,026 4 1,256 Total 37,316 7 Kesimpulan : Fhitung F tabel, paling sedikit ada sepasang perlakuan yang berbeda nyata Lampiran 11b Uji beda deformasi kamaboko BNJ = q αp,dbg  ktgn 5,76 x  1,2562 4,565 Pencucian 4 Pencucian 3 Pencucian 2 Pencucian 1 13,205 10,05 9,705 7,58 Pencucian 4 13,205 - Pencucian 3 10,05 3,155 - Pencucian 2 9,705 3,5 0,345 - Pencucian 1 7,58 5,625 2,47 2,125 - Keterangan : Tanda menunjukkan perbedaan nyata Lampiran 12 Analisis ragam kekuatan gel kamaboko Sumber Keragaman Jumlah Kuadrat derajat bebas Kuadrat Tengah F hitung F tabel Perlakuan 9421,73664 3 3140,57888 1,87670326 6,59138212 Galat 6693,8209 4 1673,45523 Total 16115,5575 7 Kesimpulan : Fhitung F tabel, tidak terdapat perbedaan nyata. Lampiran 13a Analisis nonparametrik Kruskal Wallis uji gigit Ranks perlakuan N Mean Rank Ujigigit pencucian 1 16 20.53 Pencucian 2 16 29.53 Pencucian 3 16 34.69 Pencucian 4 16 45.25 Total 64 Test Statistics

a,b

Ujigigit Chi-Square 16.418 df 3 Asymp. Sig. .001 a. Kruskal Wallis Test b. Grouping Variable: perlakuan Kesimpulan : Signifikan Asymp. Sig 0,05 artinya paling sedikit ada sepasang perlakuan yang berbeda nyata. Lampiran 13b Uji beda Multiple Comparison pada uji gigit kamaboko Perlakuan pencucian differents of mean rank λ Zhitung Z score p 1 2 -9 -0,6836 0,24711 3 -14,15625 -1,0752 0,14113 4 -24,71875 -1,8775 0,03022 2 3 -5,15625 -0,3916 0,34766 4 -15,71875 -1,1939 0,11625 3 4 -10,5625 -0,8023 0,21120 Keterangan : Z score 0,05 menunjukkan perbedaan nyata, tanda menunjukkan berbeda nyata Lampiran 14a Analisis nonparametrik Kruskal Wallis uji lipat Ranks Perlakuan N Mean Rank Ujilipat Pencucian 1 16 14.16 Pencucian 2 16 23.13 Pencucian 3 16 45.28 Pencucian 4 16 47.44 Total 64 Test Statistics

a,b

Ujilipat Chi-Square 40.073 Df 3 Asymp. Sig. .000 a. Kruskal Wallis Test b. Grouping Variable: Perlakuan Kesimpulan : Signifikan Asymp. Sig 0,05 artinya paling sedikit ada sepasang perlakuan yang berbeda nyata. Lampiran 14b Uji beda Multiple Comparison pada uji lipat kamaboko Perlakuan pencucian differents of mean rank λ Zhitung Z score p 1 2 -8,97 -0,6813 0,24783 3 -31,12 -2,3637 0,00905 4 -33,28 -2,5278 0,00574 2 3 -22,15 -1,6824 0,04624 4 -24,31 -1,8465 0,03241 3 4 -2,16 -0,1641 0,43484 Keterangan : Z score 0,05 menunjukkan perbedaan nyata, tanda menunjukkan berbeda nyata Lampiran 15 Kurva standar total fenol mgkg asam tanat Lampiran 16 Uji t kadar air serbuk teh dengan ukuran yang berbeda 100 mesh 60 mesh Rata-rata 8,31333333 9,88666667 Ragam 0,24343333 0,01103333 Observasi 3 3 derajat bebas 4 t hitung 5,40214107 Nilai P 0,0056841 t tabel 2,77644511 Kesimpulan : t hitung t tabel, kadar air serbuk teh ukuran 100 mesh berbeda dengan 60 mesh y = 0,004x + 0,089 R² = 0,992 0,5 1 1,5 2 2,5 100 200 300 400 500 A b so rb an si Konsentrasi larutan standar asam tanat ppm Lampiran 17 Uji t rendemen ekstrak fenol serbuk teh dengan ukuran yang berbeda