Syarat media tanam yang baik Bahan-bahan campuran untuk pembuatan media tanam
Strategi Teknologi - Dari
Imitasi Kreatif Sampai
Inovasi Disruptif
Initiative for Genetic Improvement of Local Rice Through Co-development and Transfer of Technologies
Inisiatif Perbaikan Genetik Varietas Padi Lokal Melalui Pengembangan Bersama dan Transfer Teknologi
Puji Lestari, Dwinita W. Utami, Muhamad Sabran, Nurul Hidayatun, dan Karden Mulya
Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian Jl. Tentara Pelajar No. 3A Bogor 16111
Korespondensi: plestari129yahoo.com
Keyword A B S T R A C T
Local rice Oryza sativa L.
varieties scattered in Asian countries have consumer preferences and adaptation to specific agro-ecosystem but low productivity. To genetically improve their
productivity and wider adaptability, a supported platform Co-development and technology transfer from The International Treaty on Plant Genetic Resources for Food and Agriculture
ITPGRFA, The Treaty is necessary. This review describes rice preference and its prioritized characters, the potential of local rice, a platform of co-development and transfer of
technology as benefit sharing under ITPGRFA. This paper also addressees how to improve local rice varieties through multi country BSF project entitled co-development and transfer of
rice technology proposed by the ICABIOGRAD-IAARD, Indonesia. A globally integrated mechanism to encourage the transfer of technology related to plant genetic resources offers
an effective approach to benefit-sharing. Research activities under the regional cooperation framework of Window 3 on BSF-ITPGRFA facilitate collaboration between institutions in
developing countries in the sustainable use of local rice varieties. The outputs of “co- development and transfer of rice technologies” research project focusing on local varieties
are to develop a gene-pool of locally adapted varieties which have been evaluated phenotypically and genetically, and to share breeding lines of local varieties already
introgressed the desired traits and molecular markers. Transfer of technologiesinformation and rice materials among participating countries refers the Treaty’s Multilateral System of
Access and Benefit Sharing as well as governmental regulation in the country. All local rice indirectly can still be utilized without worrying about the displacement by new high yielding
varieties and their gene pool remains conserved in the future.
Kata Kunci S A R I K A R A N G A N
Varietas padi Oryza sativa L.
lokal yang tersebar di berbagai negara di Asia memiliki preferensi konsumen dan adaptasi dengan agroekosistem spesifik namun produktivitasnya
rendah. Untuk memperbaiki secara genetik produktivitas dan kemampuan adaptasinya yang lebih luas, maka direalisasikan melalui dukungan platform “Co-development and technology
transfer” dari The International Treaty on Plant Genetic Resources for Food and Agriculture ITPGRFA. Riviu ini menerangkan tentang preferensi beras dan prioritas karakaternya,
potensi padi lokal, dan platform “pengembangan bersama dan transfer teknologi sebagai benefit sharing dibawah ITPGRFA. Tulisan ini juga menitik beratkan bagaimana
mengembankan padi lokal melalui proyek BSF “co-development and transfer of rice technology” yang diajukan Balai Besar Biogen-Badan Litbang Pertanian Indonesia.
Mekanisme secara global terpadu yang mendorong transfer teknologi terkait sumber daya genetik SDG menawarkan pendekatan efektif benefit- sharing. Kegiatan penelitian
kerjasama regional di bawah kerangka Window 3 benefit sharing fund BSF-ITPGRFA memfasilitasi kolaborasi antara institusi di negara berkembang dalam penggunaan
berkelanjutan varietas padi lokal. Keluaran yang diharapkan dari kegiatan pengembangan bersama dan transfer teknologi terkait pengembangan varietas lokal adalah pembuatan “gene-
pool” variatas lokal adaptif yang terkarakterisasi fenotip dan genotipiknya, dan membagi galur persilangan berbasis varietas lokal yang sudah terintrogresi karakter targetnya dan marka
molekuler. Transfer teknologiinformasi dan materi padi antar negara mitra merujuk pada Multilateral System of Access and Benefit Sharing-ITPGRFA dan peraturan negara setempat.
Kedepannya secara tidak langsung padi lokal tetap dapat dimanfaatkan tanpa khawatir tergeser oleh adanya varietas unggul baru VUB dan gene pool-nya tetap terkonservasi.
© Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
291
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
INTRODUCTION
Rice Oryza sativa L. is a staple food for more than half of the world’s population and
influences the economics of billion people. Asian people are the greatest consumers of rice 90.
In 2013 approximately 560 million people in Asia were hungryundernourished Mohanty,
2013, while growing population reached 44 billion or 59.78 of total world’s populations
with growth rate above 1. In 2010, the harvested area of paddy in Asia accounted 137
million ha 88 out of total world area 154 million and around 48 million 31 was
located in Southeast Asia solely FAOSTAT, 2012. The highest productivity is found on
irrigated rice which is the most intensive production system with high yield of 12.5
tonshayear in comparison with only 2.5 tonshayear for rainfed rice. Around 45 of the
area of rice cultivation in Southeast Asia countries is irrigated with the largest areas found
in Indonesia followed by Viet Nam and Philippine in contrast to Lao PDR, Cambodia and
Malaysia being found the lowest Mutert and Fairhust, 2002. Therefore, rice production
should be increased along with growing population.
FAO 2011 estimates that the irrigated area will be increased around 0.2 in Asia, of which
211 million ha in 2006 raise to 227 million ha in 2050. Rice feeds people in this region for
thousand years with the average annual consumption per capita was around 197 kg in
2007 FAOSTAT, 2012. Food security in Southeast Asia countries gets stronger in 2015
than that of previous years Table 1. This could be seen on the prevalence of undernourishment
2015 in Southeast Asia countries like Lao PDR, Cambodia, Myanmar were still higher ranging
from 14.2 to 18.5 than that in Thailand, Malaysia and Indonesia. Thailand proves more
stable its national food security of which prevalence of undernourishment in 2010 and
2015 has been decreased 9.3 and 7.4, respectively. Notably, the prevalence of
undernourishment in Indonesia in 2015 7.6 was relatively comparable with that in Thailand.
With the large area, Indonesia was the greatest rice production in 2014 70.8 million tons,
whereas Lao PDR produced the lowest 4 million tons Fig. 1 FAOSTAT, 2016.
Rice production system in Southeast Asia, however, has over recent years become
increasingly challenged by climate change impacting to the environmental stresses and
diseasespests incidence, decreased agricultural area and the change of consumer’s preference on
food. A number of programs addressing in management, breeding and evaluation of rice
germplasm has been evolved to pioneer the increased rice production Redfern et al., 2013.
Accumulation of knowledge and advanced technology involving local plant genetic
resources have been acquired in the quest for progress in this region. Landraceslocal rice
varieties in every country are potential genetic materials that should be improved their genetic in
parallel with preservation.
Table 1. Prevalence of under nourishment in Southeast Asia countries
Countries Prevalence of
undernourishment 2010
2015 Cambodia
17.0 14.2
Indonesia 13.5
7.6 Lao PDR
22.8 18.5
Malaysia No record
Myanmar 20.2
14.2 Philippine
13.4 13.5
Thailand 9.3
7.4 Viet Nam
14.5 11.0
FAOSTAT 2016 A large number of landracelocal varieties
belonging to three major varietal groups or subspecies exist as a result of long period
cultivation and selection. Around 80,000 accessions are collected in International Rice
Research Institute IRRI, 40,000 accessions in China gene bank, and 25,000 accessions in India
gene bank Gupta, 2011. More than 2000 local rice accessions out of around 3000 rice
accessions are preserved and collected in Indonesian Agency for Agricultural Research and
Development IAARD ICABIOGRAD, 2015,
http:biogen.litbang.pertanian.go.idplasmanutfa hdokumentasi
. These local rice accessions are diverse according
to their phenotypic properties which also show glutinous, non-glutinous, aromatic and non-
aromatic etc. Khus, 1997 and in different rice growing areas in Asia. Protection of the diversity
of local accessions and threatened landraces is necessary in the context of conservation and
traditional cultural practices on the tribal farmers in many regions. Therefore, these local rice
accessions are important in providing food and
292
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
linked with cultural functions of many people Phillips and Stolton, 2008.
Figure 1. Rice production in Southeast Asian countries in 2014 FAOSTAT, 2016.
Genetic improvement using local rice accessions involving participation of farmers has
been proposed to conserve rice diversity. Participatory plant breeding convinces to be
possible method to reduce the conflict between introduced program and traditional small farmer.
Locally adapted local rice with satisfying eating quality is preferred to ensure food security under
specific weather. Additionally, a well adapted local rice is relevant with the scenario of climate
change Gupta, 2011. Currently, governments, national and international scientific organizations
have addressed to reduce genetic erosion in rice landraces accompanied harnessing their potential
characters which are beneficial for consumers using integrated approaches.
The International Treaty on Plant Genetic Resources for Food and Agriculture Called as
the Treaty, ITPGRFA, a legally binding international framework for the conservation and
sustainable use of plant genetic resources PGR for food and agriculture, emphasizes the fair and
equitable sharing of the benefits. As a priority, such benefits flow to farmers in developing
countries including Southeast Asian who conserve and sustainably utilize PGR. A Platform
for the Co-development and Transfer of Technology has been established by the Treaty,
within the context of non-monetary benefit- sharing The International Treaty, 2013.
Through third call of Window 3, Indonesia with the national focal point of FAO Food and
Agriculture Organization, ICABIOGRAD under IAARD, has been awarded of BSFITPGRGA-
FAO for the proposed a multi country research project of “Co-development and Transfer of Rice
Technology in 2015. Indonesia, as a leader, which involved three participating countries
Malaysia, Philippine and Lao PDR commits to
improve adaptation to climate change and enhance the food security of resource-poor
farmers in Southeast Asian countries, by strengthening the conservation and sustainable
use of rice genetic resources including local varieties. Local rice varieties from each
participating country are important genetic resources would be prioritized as part scheme of
breeding and conservation.
This review describe the potency of landracelocal rice accessions to
be improved their genetic and provide food security, platform “Co-development and
technology transfer” ITPGRFA and on-going research project focusing on “Co-development
and transfer of rice technologies” among participating countries with the leader of
Indonesia.
RICE PREFERENCE AND ITS PRIORITIZED CHARACTERS IN ASIA
Consumer preferences for food is determined by the perception of biology and
economics, including taste, value, purity, and ease of processing Smith et al., 2006.
Consumer preferences often change, as demonstrated in Asia. Rice consumption per
capita in this region has decreased significantly, in line with the increase in the consumption of
wheat and other grains. Whereas, the number of rice consumers increase in the USA and Europe
Suwannaporn et al., 2008, with differing rice preference in both regions. Malay community
prefers aspects of healthy, natural, weight control, and easiness convenient, while
Japanese society preferentially considers the issue price and the Australian community is more
to have expensive appeal sensory appeal Prescott et al., 2001. People in Indonesia,
Thailand and the Philippines chose on the basis of quality of milled rice and aroma Unnevehr,
1986.
Particularly in Indonesia, since rice production is mainly concentrated in Java, the
most densely populated island in the world, therefore, Java is home of rice research and
progressive efforts for the next breakthrough. Consequently, the improved rice varieties are
designed mostly to meet Java consumers preference Sabran and Mulya, 2013.
Rice taste and aroma are determinants of rice quality in almost all consumer groups. These
two properties are genetically controlled as complex traits and varied between varieties.
293
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
Total 49,121 profiles of metabolites were found in rice grain of 51 japonica and indica cultivars,
indicating a correlation between metabolite phenotype and origin of seeds Hu et al., 2014.
Therefore, the future breeding program will require sources of diversity associated with
superior properties of rice. The superior properties of rice quality are found in many local
varieties. However, the local rice varieties generally have low potential yield and some of
them are sensitive to environmental stress, as a result, the existence is increasingly pressured by
developed new varieties with high yielding. I
n addition to rice eating quality, prioritized
characters are also targeted in high-yielding varieties along with resistancetolerance to
abiotic stress or pestdisease.
To provide more food in the future, rice improvement should be addressed to not only
productivity but also the preferences of consumers and farmers. In addition, available
=biotechnology approach which involves local rice resource. It may be different the technologies
at the national and international levels that could speed up for co-development. An example, most
cases of produced new rice varieties having high yield, and resistance to bioticabiotic stress such
as blast and stem borer resistance matched with farmers’ specific need in Indonesia Table 2
Sabran and Mulya, 2013. Farmers usually need rice varieties that complement to high yielding
are resistant to superior diseases. Local varieties majorly are cultivated in upland and tidal
swampland, even though in particular area some local rice varieties are suitable in both irrigated
and rainfed lowland Arasmanjaya et al., 2006. Therefore, the local varieties need to be
conserved and explored their potential with the advantages of supported technologies.
Table 2. Example available technologies needed by farmers for conservation and sustainable use of rice varieties in different agro-ecosystem in Indonesia.
Agro-ecosystem Technologies
available from national source
Technologies available from
international source
Technologies used by farmers
Technologies needed by farmers
Irrigated lowland Conventional and
irradiation breeding for high
yielding, short to medium duration
and resistant to bioticabiotic
stress Hybrid rice
Resistance to certain pest
disease Improved inbred
varieties, medium duration,
susceptible to stem borer
Brown plant- hopper, stem
borer, tungro, blast, bacterial
blight resistance,
Rainfed lowland Short to medium
duration Resistant to
certain pest and diseases
Improved inbred varieties
Stem borer resistance
Upland Short to medium
duration Blast resistance
Purified local varieties
Blast resistance Tidal swampland
Short to medium duration,
relatively high yield
Short duration Local varieties,
low yielding, tolerance to biotic
stress, long duration
Submergence tolerance
Sabran Mulya 2013
DISTRIBUTION AND POTENCY OF LOCAL RICE IN ASIA: EXAMPLE IN
INDONESIA Rice
Oryza sativa L. is the result of
domestication of its wild relative, O. rufipogon Londo et al., 2006 which produced two major
subspecies, japonica and indica. These two subspecies have distinctive grain
morphology,stickiness, and their own preference of consumers in Asia. Tropical regions of South
Asia are dominated by indica, while Central China and South China were centered of
japonica
varieties Civáň et al., 2015. A third subspecies, called tropical japonica, possess
294
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
broad-grained and thrives under tropics CECAP, PhilRice and IIRR, 2000. While, additional
groups sorted O. sativa into more specific characters, i.e. temperate japonica, tropical
japonica and aromatic which consisted of the japonica varieties, and indica and aus
comprising the indica varieties Garris et al., 2004.
Domesticated rice that has developed over time results a landrace being as regional ecotype,
locally adapted or traditional variety. These local rice varieties, with their historical origin in
specific geographic area, spread across countries producing rice including those in Southeast Asia.
Therefore, local varieties often are genetically diverse and associated with traditional farming
system Camacho Villa et al., 2005; Jones et al., 2008. Local rice varieties in Indonesia is
majorly 68 indica cultivar and the rest is 32 tropical japonica Thomson et al., 2007.
Meanwhile, most of new varieties released and circulated in Indonesia, also belong to indica
with average genetic diversity of 0.46. It is presumed as a result of the breeding program in
Indonesia that targeted to high yielding varieties in the irrigated lowland. Only few local rice
intended to upland. Generally, rice cultivated in rainfed are local varieties which have close or
belonging to tropical japonica cultivars. In fact, rice which has good eating quality, such as
Rojolele and Jambu, are tropical japonica cultivars. Thus, the rice varieties improvement in
the future requires local varieties especially tropical japonica Panuju et al., 2013.
At present, area of the wild progenitor of rice extends from the Eastern India to Southeast
Asia countries, particularly Myanmar, Thailand, Malaysia and Indonesia. Local varieties,
therefore, adapted to their native and cultivated environments across various agro-ecological
environments. A number of local rice with valuable genetic potentiality in Asia benefit the
adaptation to broad agro-climatic regions. Selected local rice varieties have been identified
tolerant to abiotic stress like drought, salinity, submergence, flooding and non-lodging Singh et
al., 2012; Biswas Bhattacharya, 2013. Some landraceslocal varieties are useful as source for
resistance to pests and fungal diseases Taguchi- Shiobara et al., 2013, good qualitative traits and
medicinal properties Lai, 1995, high nutrient content, and high complex carbohydrates. Some
of the landraces are good for health because of very low in fat, salt and having vitamins
thiamine, niacin, riboflavin, vitamin D, minerals iron and calcium and fibre Frei and
Becker, 2004; García Montecinos et al., 2011 as well as black rice Chang et al., 2010 etc.
Local rice varieties with good grain quality and unique are still cultivated by farmers in
certain areas as the market are still available. People in South Kalimantan and Central
Kalimantan are still cultivated varieties Siam Unus, Si Anak Daro in Pariaman, or Adan from
Nunukan. In addition to the eating quality, some local varieties Indonesia having important
properties for improving varieties tolerant to environmental stress. An examples, local variety
of Silewah possess an unfavorable agronomic properties, but is strong tolerant to cold weather,
thus beneficial for rice improvement in Japan Nakagahara et al., 1997. To bust the
productivity and late maturity of local varieties, their improvement began to get attention.
Resistance to Bacterial Leaf Blight BLB on Siputeh Luo et al., 2014 was increased by
crossing with hybrid rice WH421 which possess BLB resistance genes of sd1, Wxb, Xa4 and
Xa21. The other specific agronomic traits, are found in several local varieties resistant to
pestdisease, biotic stress and good grain quality Silitonga, 2004; Sutoro, 2010; Sitaresmi et al.,
2013. A number of local varieties suitable for irrigated lowland, upland and swampland were
used for crossing parents with improved varieties to develop new varieties Puslitbangtan, 2009;
BB padi, 2013. It should be noted that at least 10 local varieties Pandanwangi, Rojolele, Anak
Daro, Kuriek Kusuik, Junjung, Caredek Merah, Siam Mutiara,Siam Saba, Cekow, Karya have
been purified and released since 2004 to 2012 Sitaresmi et al., 2013. Given the high genetic
heterogeneity, local rice varieties have convinced to be highly adapted to various environments and
could harbor valuable genetic resources for crop improvement Karmakar et al., 2012; Ganie et
al., 2014.
PLATFORM “CO-DEVELOPMENT AND TECHNOLOGY TRANSFER” ITPGRFA
The International Treaty on Plant Genetic Resources for Food and Agriculture ITPGRFA
facilitates access and technology tranfer as one of mechanism of a non-monetary benefit sharing
from the access of genetic resources in a multilateral system MLS. It is stated at Article
13-2 that allows for access and technology transfer including any form of research and
Development http:www.planttreaty.org.
The Governing Body of ITPGRFA calls the Treaty Secretary to urge the realization of
technology transfer in order to response to
295
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
obstacle faced by countries in implementing Article 6 of the Treaty. In 2012, EMBRAPA
Brazil and IAARD Indonesia initiate the Co- Development and Transfer of Technologies, as a
form of a non-monetary benefit sharing from ITPGRFA. This initiative appreciated by
Governing Body of ITPGRFA by involving this platform initiative in the Program of Work on
Sustainable Use in the group of “supporting activities”. Thus, starting at 2014, ITPGRFA
open a new scheme on co-development and transfer technology in the frame of competitive
grant funded by third cycle ITPGRFA-Benefit Sharing Funda.
This 3rd round of projects encourages regional and inter-regional ventures especially
for projects for the ‘Co-development and Transfer of Technology. The new type of
projects on ‘Co-Development and Transfer of Technology’ will promote international
cooperation through innovative partnerships, focusing on capacity-building, information
exchange and technology transfer. An eligible countries allowed to get funding are from
developing countries Table 3. Some certain commodities are prioritized for
this BSF proposed research activities such as legume crops, food crops, fruit under utilized
crops. Rice seems to show greater chances for wider aspects compared to other commodities. A
research activities entitled “Co-development and transfer of rice technologies” proposed by
ICABIOGRAD-IAARD was selected to get grant in 2015. But this research is proceeded for the
legally documents and agreements in 2016. Being as multi country project, the project will be
implemented by a consortium which consists of the Indonesian Agency for Agriculture Research
and Development IAARD as the leading organization, and the Malaysian Agriculture
Research and Development Institute MARDI, the National Agriculture and Forestry Research
Instititute NAFRI of Lao PDR, the PhilRice of the Phillippine This research is addressed to
aspects such as exploration, characterization, database development and improving local rice
varieties.
Table 3. Example of activities funded by BSF-FAO on the sub activities of Platform of “Co-development and Transfer of Rice Technologies”
Commodities Aspect
Countries Potato
Marker-assisted breeding for adaptation against environmental
stress Peru, Ekuador, Venezuela, and
Spanyol Maize, cassava, red bean, cowpea
Conservation and characterization of PGR
Brasil, Paraguay, dan Peru Cassava
Marker-assisted breeding for adaptation against environmental
stress Tanzania, Kenya, and Spain
Banana Genetic characterization
Madagaskar, Komoro Banana, peanut, cowpea, millet, rice,
dan sorghum Information system of en situ and
on farm Uganda, Rwanda, and Zambia
Rice Exploration of phenotypic and
genotypic profiles of cultivated rice and the wild type for tolerance to
environmental stress Uganda, Burundi, Tanzania, and
Rwanda
Banana dan Bradfruit In vitro regeneration
Mauritius dan Seychelles Rice
Gene pool management for local rice, characterization and
improvement of local rice Indonesia, Laos, Filipina, dan
Malaysia Rice
Management of global database Indonesia, Brasil, Rwanda, and IRRI
Kacang Bangbara Characterization and development
of line tolerant to drought Malaysia, Ghana, Afrika Selatan,
and Indonesia Maize
Database management Indonesia, Rwanda, Kenya, Kosta
Rika, Honduras, and Nikaragua
296
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
APPROVED RESEARCH ACTIVITIES: “CO-DEVELOPMENT AND TRANSFER OF
RICE TECHNOLOGY
Local varieties or landraces are vary among countries or within a country, even in the same
agro-ecosystem. These landraces may contain important alleles that control the tolerance to
certain abiotic stress such as drought or flooding andor biotic stress such as blast or brown
planthopper infestation. Particular graineating quality are also preferred by local consumers or
certain agronomic characteristic favored by local farmers. Since most landraces and local varieties
which are well adapted and tolerance to certain biotic andor abiotic stresses, have lower
productivity
3-5 tonha compared to improvedmodern varieties 8-10 tonha,
improving their productivity, therefore, will contibute significantly to rice production.
The advanced breeding materials improved by molecular markers application such as Near
Isogenic Lines NIL, and back crossed lines which tolerance to biotic stres are progressively
achieved. Lineslocal varieties with improved yield components at the International Rice
Research Institute IRRI or in participating countries, will be helpful in improving local
varieties. Genomic information and functional molecular markers or related to genes associated
with many important agricultural traits are also reveal as significant ‘treasure’ for breeding
program. This BSF project expectedly initiate co- development and technology transfer in
Indonesia to improve local rice as part of MLS.
Focusing on the local rice varieties improvement, this research project entitled Co-
development and transfer of rice technologies” has two activities for targeted outputs. The first
output, that is to get gene-pool of locally adapted varieties which have been evaluated their
phenotypic productivity, tolerant to biotic and abiotic stresses, and eating quality and genotypic
profiles, Accordingly, four activities will be acted: 1. sharing information and data base
from each participating institutions, 2. field evaluation , 3. molecular characterization, and
4. whole genome resequencing.
The activity of sharing information and data base from each participating institutions are
focused to the gene-pool consists of local varieties that already exist in the ex situ
collection of participating countries or International Rice Research Institute IRRI. The
chosen varieties from IRRI are prioritized local accessions originating from each participating
country that have been re-sequenced their genomes. The sequenced gene pool in IRRI are
used as control varieties. This sharing information was conducted based on the
available genome re-sequences of 3000 rice lines acquired from 89 countries generated by IRRI.
The seeds of all of the rice lines re-sequenced, are collected in The International Rice Genebank
Collection housed at IRRI.
The second activity, field evaluation will be conducted for selected pure homogenous local
varieties. Evaluation will be conducted in the first and second year of the project. in the field at
local environment condition by participating countries following IRRI standard evaluation.
This phenotypic evaluation will include approximately 12 lines 3 from each participating
country out of 3000 lines which have been re- sequenced and chosen from IRRI as control
varieties. For this rice material transfer, legal procedure is needed based on sMTA. The third
activity is molecular characterization that will be done by participating countries that have the
capacity to do such a task or organizationservice. The markers used for the characterization
comprise universal primers for DNA fingerprinting analysis important for variety
identity, and markers associated with yield components and desired traits such nutritional
values, drought andor diseases. This activity will be done in the second year. The genome
resequencing fourth activity will be performed based on the results of the three previous
activities. A number of local varieties with unique and broad adaption to the environment of
each participating country will be re-sequenced for their whole genome for enriching of
development of molecular markers.
To reach the second output, i.e. the breeding lines of local varieties that was introgressed with
desired traits, ready for further testing in order to improve the productivity and the adaptability to
climate change, three activities are planed, i.e: 1. Development of breeding lines, field evaluation
of targeted traits, and molecular identification of targeted allelles. The breeding lines will be
developed from the crossing between NILs and local varieties in each participating country. NILs
collection of IAARD resistant for specific disease BLB and blast0 are available to transfer.
Selected NILs, as donor parent will be crossed with local varieties chosen in each participating
country. The local rice varieties can be selected
297
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
from the collection of gene-pool developed from this project, other designated countries or IRRI.
Further testing of these lines is conducted in the field. To complement phenotypic evaluation,
application of molecular markers will be performed to identify target alleles in segregated
populations. A number of molecular markers such as simple sequence repeat SSR and single
nucleotide polymorphism SNP corresponding to productivity, biotic and abiotic stress, and eating
quality. In addition, the NILs will be used as control in the phenotypic and molecular
characterization of breeding lines derived from the crosses of selected NILs and local varieties.
ACKNOWLEDGEMENT
This review was written based on the approved research project funded by BSF-ITPGRFAFAO.
REFERENCES
Arasmanjaya, Awang, A.R., Masduki, S., and Arvianti, E.Y. 2006. Usahatani padi
sawah dan pemasaran benih padi sawah varietas unggul di Kabupaten Barito
Timur. Buana Sains, 6, 11–20.
BB Padi. 2013. Deskripsi varietas padi. Dikompilasi oleh Suharna. BB Padi.
Sukamandi. Biswas, T. and Bhattacharya, S. 2013.
Microsatellite marker based diversity analysis for drought tolerance in some
Bengal landraces of rice Oryza sativa L.. Indian Journal of Agricultural
Research, 47 5, 431-435.
Camacho Villa, T.C.,Maxted, N., Scholten, M., and Ford-Lloyd, B. 2005. Defining and
identifying crop landraces. Plant Genetic Resources, 3, 373-384.
CECAP, PhilRice and IIRR. 2000. Highland Rice Production in the Philippine
Cordillera. Chang, T.T. 2003. Origin, domestication and
diversification. In Rice: origin, History, Technology and Production. Smith, C.W.
and Dilday, R.H. eds, John Wiley and Sons. Inc., NJ, USA. pp. 3- 25.
Chang, H., Yu, B., Yu, X., Yi, L., Chen, C., Mi, M. et al. 2010. Anticancer activities of
an anthocyanin-rich extract from black rice against breast cancer cells in vitro
and in vivo. Nutrition and Cancer, 62 8, 1128-1136.
Civáň, P., Craig, H., Cox, C.J., and Brown, T.A. 2015.Three geographically separate
domestications of Asian rice Nat Plants.
1, 15164. FAO. 2011. Save and grow-a policymaker’s
guide to the sustainable intensification of smallholder crop production. Rome.
FAOSTAT. 2012. available at: www.faostat.fao.org
FAOSTAT. 2016. available at: www.faostat.fao.org
Frei, M. and Becker, K. 2004. Agro- biodiversity in subsistence-oriented
farming systems in a Philippine upland region: nutritional considerations.
Biodiversity and Conservation, 13 8, 1591- 1610.
Ganie, S.A., Karmakar, J., Roychowdhury, R., Mondal, T.K., and Dey, N. 2014.
Assessment of genetic diversity in salt- tolerant rice and its wild relatives for ten
SSR loci and one allele mining primer of salT gene located on 1st chromosome,
Plant Systematics and Evolution DOI 10.1007s00606-014-0999-7, Published
online.
García Montecinos, K.L., Godoy Godoy, J.A.; Carrillo Centeno, P.M. and Pachón, H.
2011. Sensory evaluation of the Azucena rice Oryza sativa variety in
Nicaraguas Región Autónoma del Atlántico Norte. Perspectivas en
Nutrición Humana, 13 2, 135-146.
Garris; Tai, TH; Coburn, J; Kresovich, S; McCouch, S; et al. 2004. Genetic
structure and diversity in Oryza sativa L.. Genetics, 169 3: 1631–8
Gupta, A. 2011. Ethical and policy concerns pertaining to rice landraces in Asia.
Bangladesh J. Bioethics., 2, 7–12. Hu, C., Shi, J., Quan, S., Cui, B., Kleensen, S.,
Nikoloski, Z., Tohge, T., Alexander, D., Guoa, L., Lin, H., Wang, J., Cui, X., Rao,
J., Luo, Q., Zhao, X., Fernie, A.R., and Zhang, D. 2014. Metabolic variation
between jappnica and indica rice cultivars as revealed by non-targeted
metabolomics. Scientific Report, 4, 5067.
Jones, H., Lister, D.L., Bower, M.A., Leigh, F.J.,
Smith, L.M., Jones, M. K. 2008. Approaches and Constraints of
Using Existing Landrace Material to
298
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
Understand Agricultural Spread in Prehistory. Plant Genetic Resources.
pp. 98–112.
Karmakar, J., Roychowdhury, R., Kar, R.K., Deb, D., Dey, N. and Srivastava, H.S.
2012. Profiling of selected indigenous rice Oryza sativa L. landraces of Rarh
Bengal in relation to osmotic stress tolerance. Physiology and Molecular
Biology of Plants, 18 2, 125–132.
Kush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Molecular
Biology, 35, 25–34. Lai, J.H. 1995. Rare black glutinous rice
germplasm in eastern Guizhou province. Crop Genetic Resources 2, 53-54
Londo, J.P., Chiang, Y.C., Hung, K.H., Chiang, T.Y., and Schaal, B.A. 2006.
Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent
domestications of cultivated rice, Oryza sativa. PNAS, 103, 9578–9583.
I. Luo, Y., Zakaria, S, Bsyah, B., Ma, T., Li,
Z., Yang, J., and Yin, Z. 2014. Marker- assisted breeding of Indonesia local rice
variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance
to bacterial blight. Rice, 7:33
Mohanty, S. 2013 Trends in Global Rice Consumption. Rice Today January-
March, 44–45. Nakagahara, M.
, Okuno, K.
, and Vaughan, D
. 1997. Rice genetic resources: history,
conservation, investigative characterization and use in Japan.
Plant Mol. Biol.,
35, 69–77. Panuju, D.R., Mizuno, K., and Trisasongko, B.H.
2013. The dynamics of rice production in Indonesia 1961-2009. J. Saud. Soc.
Agric., 12, 27–37.
Phillips, A. Stolton, S. 2008. Protected landscapes and biodiversity values: an
overview. In: Amend, T., Brown, J., Kothari, A., Phillips, A. and Stolton, S.
Eds.: Protected Landscapes and Agrobiodiversity Values. Vol.I. Protected
Landscapes and Seascapes. IUCN GTZ, Kasparek Verlag, Heidelberg.
Prescott, J., Young, O., O’Neill, L., Yau, N.J.N., and Stevens, R. 2002. Motives for food
choice: a comparison of consumers from Japan, Taiwan, Malaysia and New
Zealand. Food Quality and Preference, 13, 489–495.
Pusat Penelitian dan Pengembangan Tanaman Pangan. 2009. Deskripsi varietas unggul
padi 1943-2009.Dikompilasi oleh Hermanto, Dedik S.W, E. Hikmat.
Puslitbang Tanaman Pangan. Bogor.
Redfern, S.K., Azzu, N., and Binamira, J.S. 2013. Rice in Southeast Asia : facing
risk and vulnerabilities to respond to climate change. Building resilience for
adaptation to climate change in the Agriculture sector. pp 295-314.
Sabran, M. Mulya, K. 2013. Technologies needed by smallholder farmers in
Indonesia for conservation and sustainable use of plant genetic resources
for food and agriculture. The International Treaty. pp.22-31.
Silitonga, T.S. 2004. Pengelolaan dan pemanfaatan plasma nutfah padi di
Indonesia. Buletin Plasma Nutfah, 102, 56-71.
Singh, S.P., Goel, R.K., Hunjan, M.S., Vikal, Y. and Lore, J.S. 2012. Screening of land
races of rice Oryza sativa for bacterial blight resistance and marker assisted
surveying of known Xaxa genes. Plant Disease Research Ludhiana 27 2, 209-
215.
Siteresmi, T., Wening, R.H., Rakhmi, A.T., Yunani, N., and Susanto U. 2013.
Pemanfaatan plsma nutfah padi varietas lokal dalam perakitan varietas unggul.
IPTEK Tanaman Pangan. 8, 22-30.
Smith, M L. 2006. The Archaeology of Food Preference. American Anthropologist,
108, 480–493. Sutoro, Somantri, I.H., Silitonga, T.S., Budiarti,
S.G., Hadiatmi, Asadi, Minantyorini, Zuraida, N., Suhartini, T., Dewi, N.,
Setyowati, M., Tri Zulchi P.H., Diantina, S., Risliawati, A., dan Juliantini, E.
2010. Katalog data paspor plasma nutfah tanaman. BB Biogen. Bogor.
Suwannaporn, P., Linnemann, A.A., and Chaveesuk, R. 2008. Consumer
preference mapping for rice product concepts. British Food Journal, 110, 595-
606.
Taguchi-Shiobara, F., Ozaki, H., Sato, H., Maeda, H., Kojima, Y., Ebitani, T. et al.
299
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
2013. Mapping and validation of QTLs for rice sheath blight resistance. Breeding
Science, 63 3, 301- 308
Thomson, M.J., Septiningsih, E.M., Suwardjo, F., Santoso, T.J., Silitonga, T.S., and
·McCouch, S.R. 2007. Genetic diversity analysis of traditional and improved
Indonesian rice Oryza sativa L. germplasm using microsatellite markers.
Theor. Appl. Genet., 114, 559–568. Unnevehr, L.J. 1986. Consumer Demands for
Rice Grain Quality and Returns to Research for Quality Improvement in
Southeast Asia. Amer. J. Agr. Econ., 68, 634–641.
Yanchang, L.Y., Zakaria, S., Basyah, B., Ma, T., Li, Z., Yang, J., and Yin, Z. 2014.
Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf
phenotype, good grain quality and disease resistance to bacterial blight. Rice, 7, 33.
300
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
STRATEGI PENINGKATAN KUALITAS APLIKASI TEKNOLOGI INFORMASI PELAYANAN PENGUJIAN PUSAT
PENELITIAN A MELALUI ISO 20000
Strategy For Improving The Quality Of Information Technology Application Of
Testing Service In Research Center A Through ISO 20000
Muh. Azwar Massijaya
Kelompok Penelitian Manajemen Mutu Pusat Penelitian Sistem Mutu dan Teknologi Pengujian – Lembaga Ilmu Pengetahuan Indonesia
Kawasan Puspitek, Gedung 417 Tangerang Selatan 15314, Banten Korespondensi :
AzMassijayayahoo.com
Keyword A B S T R A C T
ISO 20000, SILAT, Information Management System
In order to support the testing process is a form of transparency and support for the implementation of quality management system
requirements of ISO 9001, A Research Center launched a program called SILAT information technology application in 2015. With SILAT
application, the customer is expected to recognize the progress of their product, which are being tested. However, as the new software, SILAT
have never received any supporting regarding analysis of information management systems, makes wider opportunity to improving the service to
customers. In the ISO standard, a standard that can be used as a guideline is ISO 20000. On the other hand, research that discussed the ISO 20000,
especially in the context of government institutions, is still scarce. Therefore, research on improving the quality of application of information
technology for service testing of Research Centre A through ISO 20000 becomes important. This study aims to find the weaknesses and strengths
of SILAT management software to purposed recommendations for improving the quality of testing services to its customers. This study used a
qualitative approach. Data obtained through observations and interviews with experts whose responsible for the development of SILAT. The results
of the analysis is presented in this paper as recommendations for improving the information of testing services of research center A.
Kata Kunci S A R I K A R A N G A N
ISO 20000, SILAT, Sistem Manajemen Informasi.
Dalam rangka mendukung bentuk transparansi proses pengujian dan dukungan terhadap implementasi persyaratan sistem manajemen mutu ISO
9001, Pusat Penelitian A meluncurkan program aplikasi teknologi informasi bernama SILAT pada tahun 2015. Dengan aplikasi SILAT,
maka para pelanggan diharapkan dapat mengetahui perkembangan dari barang mereka yang sedang diuji. Namun, sebagai software yang baru,
SILAT belum pernah mendapat dukungan berupa analisis sistem manajemen informasi, sehingga masih membuka peluang untuk
peningkatan layanan yang lebih baik terhadap pelanggan. Dalam standar ISO, standar yang dapat digunakan sebagai pedoman adalah ISO 20000.
Di satu sisi, penelitian yang membahas mengenai ISO 20000, terutama dalam konteks kelembagaan pemerintah, masih ditemukan dalam jumlah
yang sedikit. Oleh karena itu, penelitian mengenai upaya peningkatan kualitas aplikasi teknologi informasi pelayanan pengujian Pusat Penelitian
A melalui ISO 20000 menjadi penting. Penelitian ini bertujuan untuk menemukan kelemahan dan kekuatan manajemen software SILAT
sehingga dapat disusun rekomendasi untuk peningkatan kualitas pelayanan pengujian kepada para pelanggan. Penelitian ini menggunakan pendekatan
301
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
PENDAHULUAN
Pada saat ini, tingkat persaingan yang tinggi membuat berbagai jenis organisasi terus
berupaya untuk meningkatkan kepuasan pelangga dengan mengidentifikasi, dan
berusaha untuk melampaui kebutuhan dan harapan para pelanggannya. Dalam mengejar
hal tersebut, berbagai bentuk sistem manajemen mutu menjadi populer, dan kerangka sistem
manajemen mutu ISO 9001 menjadi kerangka sistem manajemen mutu yang paling banyak
digunakan diseluruh dunia ISO 2015 karena persyaratan yang dimilkinya dirancang untuk
dapat diterapkan pada berbagai tipe organisasi tanpa memandang ukuran maupun jenis usaha
yang dijalankan oleh organisasi tersebut ISO,2015. menurut Hoyle 2009, ISO 9001
memiliki berbagai turunan untuk menyesuaikan standar dengan bidang – bidang tertentu seperti
industri pesawat terbang, otomotif, produsen alat kesehatan, telekomunikasi serta juga untuk
industri makanan dan minuman. Untuk manajemen sistem layanan berbasis teknologi
informasi, ISO telah menerbitkan dokumen ISO 20000.
SILAT adalah layanan berbasis teknologi informasi yang dibangun oleh pusat penelitian
A untuk meningkatkan kualitas pelayanan yang dimilikinya kepada para pelanggan pengujian.
Dengan SILAT, pelanggan pengujian dapat melakukan monitoring order, tracking dan
searching order, dan komunikasi. Namun, SILAT adalah sistem layanan teknologi
informasi yang baru, dan kerangka sistem manajemen untuk menjamin kualitas
pengelolannya belum sepenuhnya dikembangkan. Salah satu bentuk kerangka
sistem manajemen pelayanan berbasis teknologi informasi yang dapat digunakan
adalah ISO 20000. Meninjau penelitian terdahulu yang telah
dilakukan, ISO 2000 dapat memberikan berbagai manfaat positif berupa kendali dan
manajemen pelayanan berbasis teknologi informasi Steel 2007. Lebih lanjut, Steel
2007 juga menjelaskan bahwa ISO 20000 menyediakan kerangka kerja bagi manajer
untuk mendokumentasikan, mengaudit, dan meningkatkan manajemen pelayanan TI. Park
dan Kim 2012 menyebutkan bahwa ISO 20000 telah diterapkan oleh Korea Institue of
Science and Technology Information KISTI untuk meningkatkan kepuasan pelanggan.
Meskipun demikian, penelitian tentang kerangka manajemen layanan teknologi
Informasi berbasis ISO 20000, terutama fokus untuk upaya peningkatan kualitas aplikasi
pelayanan
pengujian milik pemerintah, jumlahnya masih sedikit. Umumnya penelitian
yang ada membahas mengenai kerangka manajemen layanan yang tidak berbasiskan
standar ISO, misalnya penelitian yang dilakukan oleh Aazadnia dan Fasanghari
2008; AlShamy dkk 2012; dan Kolarovszka 2013.
Oleh karena itu penelitian ini penting untuk menjawab pertanyaan: “seperti apa
kekuatan dan kelemahan SILAT menurut kerangka manajemen layanan informasi
teknologi ISO 20000?”. Dengan menjawab pertanyaan tersebut, dapat disusun rekomendasi
perbaikan manajemen layanan SILAT, dan diharapkan dapat meingkatkan kepuasan
pelangga pengujian pusat penelitian A.
KERANGKA TEORI 2.1 Sistem Manajemen Mutu
Tague 2005 menjelaskan sistem manajemen mutu sebagai sistem dibangun oleh suatu
organisasi untuk mengorganisasikan atau
kualitatif. Data diperoleh melalui observasi dan wawancara dengan pakar yang bertanggung jawab terhadap pengembangan SILAT. Hasil analisis
dipaparkan di dalam makalah ini sebagai rekomendasi untuk peningkatan informasi pelayanan pengujian pusat penelitian A..
© Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
302
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
mengelola peningkatan semua tingkat internal organisasi tersebut dengan melibatkan konsep
filosofis tertentu dan metode tertentu. Sedangkan di dalam dokumen ISO 9000 : 2015
ISO, 2015 mejelaskan bahwa sistem manajemen mutu merupakan suatu sistem yang
mendukung :
1. Kegiatan organisasi untuk menetapkan sasaran, proses dan sumberdaya yang
diperlukan 2. Mengorganisasikan proses yang saling
berinteraksi, dengan mempertimbangkan sumberdaya
3. Meningkatkan penggunaan sumber daya secara optimal dengan mempertibangkan
risiko yang mungkin muncul dari aktifitas tersebut
4. Membantu identifikasi cara dalam penanganan resiko dalam penyediaan
produk dan jasa. Berikut ini adalah contoh kerangka sistem
manajemen mutu yang banyak digunakan secara umum :
1. Total Quality Management. Tague 2004 menjelaskan bahwa TQM adalah “semua
sistem manajemen mutu yang melingkupi semua bidang sebuah organisasi,
menekankan kepuasan pelanggan dan menggunakan metode dan alat untuk
peningkatan berkelanjutan”
2. ISO 9000. Tague 2004 menjelaskan bahwa ISO 9000 merupakan set standar
yang digunakan secara internasional, dimana pada prakteknya organisasi diaudit
oleh auditor berdasarkan persyaratan – persyaratan yang terdapat di dalam
dokumen ISO 9000. Set standar ISO 9000 terdiri dari tiga dokumen, yaitu ISO 9000
tentang dasar dan kosa kata; ISO 9001 persyaratan; dan ISO 9004 panduan untuk
peningkatan kinerja Evan, 2005.
3. Malcom Baldrige National Quality Award MBNQA. Tague 2004 menjelaskan
bahwa MBNQA adalah penghargaan secara nasional yang diberikan kepada organisasi
atau bagian dari organisasi yang berkinerja di atas rata – rata dengan bukti adanya
kinerja luar biasa pada aspek kualitas, mutu, produktifitas, kepuasan pelanggan, dan
kesuksesan pasar. Evan 2005 menjelaskan bahwa MBNQA pertama kali disusun oleh
Amerika Serikat untuk membangkitkan kembali industri dalam negari AS yang
mulai goyah oleh produk milik Jepang.
2.2 Persyaratan ISO 20000 – 1 secara umum Menurut dokumen ISO 20000 ISO,2009,
standar ISO 20000 versi 2011 terdiri dari 5 bagian, yaitu :
1 Bagian 1 : persyaratan sistem manajemen layanan
2 Bagian 2 : pedoman penerapan sistem manajemen layanan
3 Bagian 3 : pedoman pendefinisian lingkup dan kesesuaian dari ISOIEC 20000-1
4 Bagian 4 : Model referensi proses 5 Bagian 5 : contoh acuan perencanaan
implementasi ISOIEC 20000-1 Dokumen ISO 20000 yang menjadi acuan di
dalam pelaksanaan penelitian ini adalah dokumen ISOIEC 20000 bagian 1 :teknologi
informasi - persyaratan sistem manajemen layanan. ISO 2009 juga menjelaskan bahwa
ISOIEC 20000 bagian 1 dapat digunakan untuk :
1 organisasi yang mencari pelayanan dari
penyedia layanan dan membutuhkan jaminan bahwa persyaratan mereka atas
layanan tersebut dipenuhi
2 organisasi yang merasa harus untuk menyediakan layanan secara konsisten
3 penyedia layanan yang ingin menunjukkan kemampuannya dalam merancang,
mengimplementasikan dan meningkatkan pelayanan yang dpaat memenuhi
persyaratan pelayanan
4 penyedia layanan yang ingin memonitor, mengukur dan mengkaji proses manajemen
layanan dan pelayanannya 5 penyedia layanan yang ingin meningkatkan
rancangannya, perubahan, dan pemberian
303
Forum Tahunan Pengembangan Iptek dan Inovasi Nasional VI, Tahun 2016
layanan melaui implementasi yang efefktif dan operasi dari sistem manajemen layanan
6 penilai atau auditor kriteria kesesuaian dari pihak penyedia layanan untuk persyaratan
ISOIEC 20000 bagian 1. Secara umum, ISOIEC 20000 – 1 berisikan
enam klausul persyaratan, yaitu :