Analisa Transformasi Fast Fourier

Gambar 9-25: Satu bingkai spektogram yang menunjukkan kejadian picu dimana sinyal transien terjadi disekitar topeng frekuensi Gambar 9-26: Tiga bingkai sampel sinyal ranah waktu

9.3.6.9.1. Jendela Ada suatu asumsi yang tidak bisa

dipisahkan dalam matematika dari Discrete Fourier Transform dan analisa FFT yang mana data diproses berupa perioda tunggal dari pengulangan sinyal. Gambar 9-26 melukiskan serangkaian sampel ranah waktu. Pada saat memproses FFT diaplikasikan pada bingka 2, misal perluasan sinyal periodik. Discontinuitas antar bingkai berurutan pada umumnya terjadi seperti ditunjukkan pada gambar 9-27 Tiruan diskontinuitas menimbulkan respon palsu tidak ada dalam sinyal aslinya, yang dapat membuat tidak mungkin untuk mendeteksi sinyal kecil yang berada didekat yang besar. Ini berpengaruh dinamakan kebocoran spektrum. RSA menerapkan teknik jendela pada bingkai FFT sebelum pemrosesan FFT dibentuk untuk mengurangi pengaruh kebocoran spektrum. Fungsi jendela pada umumnya mempunyai bentuk bel. Terdapat sejumlah fungsi Gambar 9-27: Diskontinuitas yang disebabkan oleh ekstensi periodic dari sampel dan bingkai tunggal jendelam yang popular Blackman- Haris profil 4BBH4B ditunjukkan dalam gambar 9-28. Gambar 9-28: Profil jendela Blackman-Harris 4B BH4B Fungsi jendela Blackman-Haris 4B ditunjukkan dalam gambar 9-25. memiliki harga nol untuk sampel pertama dan terakhir dan kurva kontinyu diantaranya. Perkalian bingkai FFT dengan fungsi jendela mengurangi diskontinuitas pada akhir bingkai. Dalam kasus ini jendela Blackman-Haris, dapat mengurangi diskontinuitas bersama.

9.3.6.9.2. Efek jendela adalah untuk menempatkan

beban lebih besar pada sampel di pusat jendela dibanding men]jauh dari pusat, membawa harga nol pada akhir. Ini dapat dipirkan secara efektif mengurangi waktu yang dihitung oleh FFT. Waktu dan frekuensi adalah jumlah timbale balik. Semakin kecil waktu sampel resolusi frekuensi semakin lemah lebar. Untuk jendela Blackman-Haris 4B, resolusi frekuensi efektif mendekati dua kalli sebaik nilai yang dapat dicapai tanpa jendela. . Implikasi lain dari jendela adalah data ranah waktu dimodifikasi dengan menghasilkan jendela suatu keluaran spektrum FFT yang sangat sensitive terhadap perilaku pusat bingkai, dan tidak dapat merasakan perilaku di permulaan dan akhir bingkai. Sinyal transien muncul dekat salah satu ujung dari bingkai FFT yang dilonggarkan dan dapat luput semuanya sama sekali. Masalah ini dapa diselesaikan dengan menggunakan bingkai tumpang tindih, teknik kompleks meliputi trade-off antara penghitungan waktu dan kerataan ranah waktu untuk mencapai performansi yang diinginkan. Secara singkat diuraikan di bawah ini.

9.3.6.9.3. Pemrosesan Paska FFT

Karena fungsi jendela melemahkan sinyal pada kedua ujung dari bingkai, ini mengurangi daya sinyal keseluruhan, amplitudo spektrum diukur dari FFT dengan jendela harus diskala untuk memberikan pembacaan amplitudo dengan benar. Untuk sinal gelombang sinus murni factor skala merupakan penguatan DC dari fungsi jendela. Setelah pemrosesan juga digunakan untuk menghitung amplitudo spektrum dengan menjumlahkan bagian riil yang dikotak dan bagian kotak imaginer pada setiap bin FFT. Spektrum amplitudo pada umumnya diperagakan dalam skala logaritmis sehingga berbeda dengan frekuensi cakupan ampitudo lebar dan diperagakan secara serempak pada layar yang sama.

9.3.6.9.4. Bingkai Overlap

Beberapa penganalisa spektrum waktu riil dapat dioperasikan dalam mode waktu riil dengan bingkai tumpang tindih. Pada saat ini terjadi, bingkai sebelumnya diproses pada saat sama dengan bingkai baru diperoleh. Gambar 2- 29. menunjukan bagaimana bingkai diperoleh dan diproses. Satu keuntungan dari bingkai tumpang tindih kecepatan penyegaran peraga ditingkatkan, efek yang paling nyata dalam membatasi span yang diperoleh sempit waktu akuisisi panjang. Tanpa bingkai overlap, layar peraga tidak dapat diperbaharui sampai diperoleh bingkai baru masuk. Dengan bingkai overlap, bingkai baru diperagakan sebelum bingkai sebelumnya diselesaikan. Waktu Gambar 9-29: Sinyal akuisisi, pemrosesan dan peraga menggunakan bingkai overlap Keuntungan lain peraga ranah frekuensi dalam peraga spektogram. Karena jendela menyaring mengurangi konstribusi dari sampel pada setiap akhir bingkai ke nol, spektrum terjadi pada sambungan antara dua bingkai, diatur dapat hilang jika bingkai tidak overlap. Bagaimanapun, mempunyai bingkai yang overlap memastikan bahwa semua spektrum akan dapat dilihat pada peraga spektrogram dengan mengabaikan efek jendela.

9.3.6.9.5. Analisa Modulasi Modulasi merupakan alat yang

melewatkan sinyal RF sebagai pembawa informasi. Analisis modulasi menggunakan RSA tidak hanya mentransmisikan isi data namun juga mengukur secara akurat dengan sinyal yang Bingkai 1 Bingkai 1 Bingkai 2 Bingkai 3 Bingkai 3 Bingkai 2 Bingkai 4 Bingkai 3 dimodulasikan. Lebih dari itu, mengukur banyaknya kesalahan dan pelemahan yang menurunkan tingkat kualitas modulasi.Sistem komunikasi modern telah secara ddrastis ditingkatkan jumlah format modulasi yang digunakan. Kemampuan menganalisa RSA pada banyak format dan memiliki arsitektur yang memungkinkan untuk menganalisa format baru.

9.3.6.10. Modulasi Amplitudo,

Frekuensi dan Pasa Pembawa RF dapat mengantarkan informasi dalam banyak cara didasarkan pada variasi amplitudo, pasa dari pembawa. Frekuensi merupakan waktu yang diturunkan dari phasa. Frekuensi modulasi FM meskipun waktu diturunkan dari pasa modulasi PM. Pengunci pergeseran pasa quadrature QPSK merupakan format modulasi digital yang symbol berbagai titik keputusan terjadi pada 90° dari pasa. Quadratute Amplitudo Modulation AM merupakan format modulasi tingkat tinggi yang kedua amplitudo dan pasa divariasi secara serempak untuk memberikan berbagai keadaan. Bahkan format modulasi sangat kompleks seperti Orthoganal Frequency Division Multiplexing OFDM dapat menjadi dekomposisi kedalam besaran dan komponen pasa. Besaran dan pasa dapat dipandang sebagai panjang dan sudut vector dalam sistem coordinator polar. Pada itik yang sama dapat diekspresikan dalam koordinatcartesian atau koordinat segi empat. Format IQ dari sampel waktu disimpan dalam memori oleh RSA secara matematis ekuivalen koordinat Cartesian, I dengan mempresentasikan I horizontal atau komponen X dan Q vertikal sebagai komponen Y. Gambar 9-30. mengilustrasikan besaran dan pasa dari vector sepanjang komponen I dan Q. Demodulasi Am terdiri dari penghitungan besaran sesaat untuk setiap sampel IQ disimpan dalam memoro dan menggambarkan hasil dari waktu ke waktu. Modulasi PM terdiri dari penghitungan sudut pasa dari Gambar 9-30 Vektor besaran dan pasa Besar = Fasa = tan -1 QI I 2 + Q 2 I Q sampel I dan Q dalam memori dan menggambarkannya dari waktu ke waktu setelah penghitungan untuk discontinuitas dari fungsi arctangent pada ± –2. Suatu kali pasa PM dihitung untuk direkam waktunya, FM dapat dihitung dengan mengambil waktu penurunan.

9.3.6.10.1. Modulasi Digital

Pemrosesan sinyal dalam sistem komunikasi digital pada umumnya ditunjukkan pada gambar 9-31. Proses memancarkan dimulai dengan mengirim data dan clock. Data dan clock dilewatkan melalui sebuah encoder yang menyusun data kembali, dan menambahkan bit sinkronisasi serta mengembalikan jika terjadi kesalahan dalam membuat sandi dan perebutan scrambling. Data kemudian dipisah ke dalam alur I dan Q dan disaring, perubahan bentuk gelombang dari bit ke analog yang kemudian dikonversi ke atas ke dalam kanal yang tepat dan dipancarkan ke udara. Pada saat dipancarkan sinyal mengalami penurunan karena pengaruh lingkungan yang tidak bisa diacuhkan. Gambar 9-31 : Tipikal sistem telekomunikasi digital Filter Rx Filter Sinyal pemancar Pemancar Penerima Enkoder Data Clock I Q IQ Osilator lokal konversi IQ Osilator lokal Perbaikan frekuensi clock, data Demodulasi Dekoder Data Clock