Verifikasi Sifat Operasi Dari Sistem Windshield-Wiper Otomatis

Bus penjejajakan multiwarna ditunjukkan pada bagian bawah peraga osiloskop, informasi korelasi waktu CAN yang telah di decode dibaca kanal akuisisi CAN yang dipilih pemakai dalam hal ini kanal 1. Dalam perancangan khusus ini, amplitudo keluaran sesaat dari sensor analog jarak jauh diubah kedalam nilai digital dengan pengubah analog ke digital ADC, kemudian secara berturut-turut dikirimkan ke ECU sebagai data byte tungal dalam satu bingkai khusus 07F HEX. Pengulangan transmisi penginderaan dari keluaran sensor dan menguji sifat operasi prototip MSO diperlukan untuk mengatur pemicu pada bingkai data 07FHEX sebagaimana ditunjukkan pada gambar 3. Keluaran sensor berbentuk sinyal analog selalu ditranmisikan dalam bingkai ini. Dengan pengaturan kondisi osiloskop, ahli perancang otomotip telah mampu memudahkan pengukuran amplitudo analog dari keluaran sensor 3,14 V sementara itu juga memantau dan memverifikasi nilai data, BHEX yang sebenarnya telah ditranmisiskan dalam paket CAN. Sementara pengetesan sistem prototipe wiper otomatis dalam laboratorium diamati tidak bermasalah, dan perbedaan sinyal CAN muncul hampir tanpa nois. Sayangnya bila subsistem otomotip diintegrasikan ke dalam otomobil, sistem wiper otomatis menjadi tidak reliable dan ini ditentukan oleh nilai data yang diterima oleh ECU, yang tidak selalu sesuai kondisi pisik nyata dari sensor. Bila masalah rangkaian dapat diprediksi dan dilakukan pengulangan, ini menjadi lebih baik dan mudah memisahkan tugas untuk menemukan sebab utama dari masalah rangkaian. Namun perancangan khusus otomotip ini telah diintegrasikan ke dalam otomobil, peran transmisi data dari sensor acak membuatnya sulit untuk memisahkan sebab dari masalah. Sinyal yang sama dengan aslinya diukur dalam laboratorium, namun pada saat itu sinyal diindera dengan sistem wiper otomatis dintegrasikan ke dalam otomobil ini ditunjukan pada gambar 11- 4. Sekarang bisa dilihat pengaruh nois dan interferensi pada sinyal perbedaan CAN, yang disebabkan oleh kebisingan yang keras pada kendaraan. Ahli perancang otomotip memantau peraga osiloskop, sementara itu pemicuan secara berulang-ulang pada data bingkai ID 07FHEX. Ahli sekali-kali mengamati cahaya merah dalam tanda decode CAN bawah penjenjakan dalam gambar 11-5. Gambar 1-5. Kesalahan acak yang teramati dalam dekode CAN pada bingkai data ID : 07F HEX MSO mendecode CAN, dalam perkembangannya kondisi jelek dikodekan dengan warna CRC merah, dan kondisi salah dalam bingkai lain ditunjukan sebagai penjejakan bus warna merah. Osiloskop ini mempunyai kecepatan update bentuk gelombang yang cepat di atas 100 000 bentuk gelombang perdetik dalam waktu sebenarnya dan perangkat keras secara serial dipercepat mendekode untuk mengambil data transmisi dengan hasil yang jarang jelek. Hardware dipercepat secara serial mendekode peraga, mendekode string secepat 60 kali perdetik lebih cepat dari kemampuan mata manusia membaca, namun cukup rendah untuk melihat kode warna kondisi salah, ini jarang terjadi, jika ini terjadi. Kebanyakan osiloskop dengan memori dan memecahkan kode serial mempunyai kemampuan penyegaran sangat lambat. Ini terutama dikarenakan pemecahan kode menggunakan perangkat lunak paska pemrosesan. Penyegaran bentuk gelombang dan pemecahan kode sering mengambil waktu beberapa detik. Ini berarti bahwa jika terjadi kesalahan jarang, kebanyakan kondisi salah akan terjadi secara acak selama osloskop mati bukan selama osiloskop melakukan akuisisi . Ini membuat hamper tak mungkin menangkap errant transmisi secara acak dengan menggunakan osilokop tradisional, mustahil mampu melakukan penpemicuan CAN dan mendekode. Namun perangkat keras dipercepat dengan CAN decoding MSO secara statistik ditingkatkan probabilitasnya menangkap keacakan dan kondisi kesalahan karena kedua bentuk bentuk gelombang dan decode CAN mempunyai kecepatan penyegaran data melampaui kecepatan pengulangan bingkai data 07FHEX. Untuk menyegarkan tampilan osiloskp dengan satu kejadian data transmisi jelek, atasi terlebih dahulu dengan mencoba tekan lingkup panel depan. Kunci STOP bila diamati tanda decode merah.Sayangnya bentuk gelmbang osiloskop dan kecepatan penyegaran data decode sangat cepat, maka ketika STOP ditekan beberapa urutan akuisisi telah dilakukan dan peraga selalu berhenti pada data tranmisi yang baik. 1 1.1.3. Pemicuan MSO Pada Bingkai Kesalahan Mengungkapkan Masalah Integritas Sinyal Langkah berikutnya pada saat mengatur pemicuan osiloskop hanya untuk menyerempakkan bingkai kesalahan sebagaimana ditinjukkan pada gambar 11-6. Dengan mengatur kondisi pemicu pemicu pada bingkai kesalahan, osiloskop hanya menangkap dan memperagakan transmisi CAN jelek dan mengabaikan transmisi yang baik. Sekarang teknisi dapat menekan salah satu kunci STOP pada waktu manganalisa kualitas sinyal jelek yang terakhir ditransmisikan bingkai CAN, atau menggunakan osiloskop pendek tunggal dengan mode untuk membekukan peragaan pada data transmisi jelek berikutnya. Dari hasil peragaan ini teknisi mengutamakan kecurigaan pada masalah data transmisi acak terutama urutan acak nois diteruskan ke perbedaan sinyal CAN puncak penjejakan. Maka dapat dilihat bahwa nosie menumpang pada sinyal CAN muncul dengan distribusi Gaussian. Sebagai bukti dengan diberikan tingkat intensitas peraga, osiloskop mampu pembesar beberapa kali dari pada sistem peraga serupa pada osiloskop analog tradisional. Namun setelah pengukuran tingkat keacakan nois dengan standar deviasi MSO, teknisi menentukan bahwa tingkat sinyal nois dalam toleransi khusus dan tidak mempengaruhi kesalahan. Gambar 11-6. Pemicuan pada CAN bingkai error mengisolasi perbedaan akuisisi CAN pada bingkai transmisi pengulangan bentuk gelombang giltch Setelah jauh menginspeksi perbedaan sinyal CAN pada kanal 1, teknisi akan menemukan bahwa glitch sempit telah terjadi selama transmisi bingkai data terutama muncul pada ujung ke 5 dari sinyal perbedaan CAN. Bila dilihat rekaman bingkai CAN dalam kondisi normal yang dimampatkan dari hasil memori bagian dalam akuisisi di atas 8 M titk menyebar pada layar peraga dengan time base pada 200 —sdiv gambar 11- 7, glitch dengan mudah dapat dilihat dengan osiloskop resolusi kecepatan sampel yang tinggi sampai di atas 4 GSas. Setelah menemukan glitch dan mengukur amplitudo dengan kursor MSO, teknisi menekan tombol RUN pada panel depan osiloskop untuk memulai kembali pengulangan akuisisi sementara pemicuan hanya pada bingkai yang salah. Sementara mengamati penyegaran pengulangan bentuk gelombang pada osiloskop , teknisi dapat melihat bahwa glitch tidak hanya jarang terjadi, namun juga dalam lokasi acak dalam bingkai data dan tidak ada hubungan pasa secara khusus pada perbedaan Gambar 11-7. Perbesaran bentuk gelombang glitch pada CAN sinyal CAN. Ini dimunculkan bahwa glitch disebabkan oleh sambungan sinyal dari sumber yang tidak berkaitan dengan pasa. Jika sumber dari glitch dapat dilacak turun, kemudian sebab utama bisa ditemukan dengan lebih mudah ditentukan dan ditetapkan.

11.1.4. Pemicuan MSO Mengungkapkan Glitch Acak Sebagai Sumber Masalah

Untuk menyerempakkan peragaan osiloskop pada glitch yang tidak berkaitan dengan pasa lebih baik dari pada bingkai kesalahan, ahli perancang otomotip pada tingkatan berikutnya mengatur osiloskop secara unik dengan memicu pada glitch. Cara ini dipenuhi dengan menggunakan kemampuan osiloskop pemicu lebar pulsa , yang dapat memicu pada salah satu pulsa positip atau negatip di dasarkan pada keacakan kejadian glitch, selalu menangkap dan menunjukkan glitch didekat lokasi kegagalan pemicu di tengah layar osiloskop. Sekarang bingkai data CAN dimunculkan tidak dikaitkan dalam istilah hubungan pasa relatip terhadap sumber pemicu glitch. Untuk melacak turun sumber glitch, teknisi kemudian menghubungkan probe yang lain pada kanal yang tidak digunakan kanal 4 dari kanal 4 sampai 16. MSO memulai mengindera sinyal yang dicurigai dalam otomobil untuk melihat sinyal yang mana mungkin tidak diserempakkan berkaitan dengan pasa pada glitch. Setelah beberapa menit, teknisi menemukan sumber glitch seperti ditunjukkan pada gambar 11-8. Bentuk gelombang kanal 4 bagian dasar warna merah muda menunjukkan pulsa digital yang dikontrol sebuah relay yang memicu sentakan tegangan tinggi dalam sarana pengatur tegangan. Jika siklus pengatur tegangan selama waktu transmisi dari bingkai gambar ID : 07FHEX , kesalahan akan adakalanya terjadi dalam sistem windshield-wiper. Gambar 11-8. .Lebar pulsa Pemicu pengulangan sumber acak dan glitch Pada saat teknisi melacak turun sumber masalah, ini jelas mudah untuk mengisolasi node windshield-wiper CAN dari sinyal tegangan tinggi dalam perlindungan yang lebih baik, yang mana juga secara signifikan dikembangkan sistem CAN yang kebal terhadap nois .

11.1.5. Penambahan Pengetesan Troughput ECU Otomotip Pengaturan sistem kelistrikan

otomobil kurang dan baik, kadang kurang dan kadang melampuai. Cakupan tegangan dapat dari 11 sampai 15 V di bawah kondisi normal dan dari 8 sampai 24 V pada saat transien permulaan dan konisi kerja. Sebagai akibatnya batas pengetesantegangan diperlukan menjadi bagian dari satuan kontrol mesin ECU untuk diveifikasi sifat operasi dan toleransi kondisi tegangan bias ekstrim. Permasalahannya setiap detik waktu pengetesan dihitung dalam persaingan pasar elektronik otomotip. Pengetesan pengganda tegangan bias bagian dari pengetesanECU.Kebanyakan sistem tegangan DC menyediakan waktu yang diperlukan signifikan untuk mengubah dan mengatasi pengaturan keluaran baru, menambah beberapa detik pada