Penghapusan PERALATAN ELEKTRONIKA KEDOKTERAN

Tabel 9-1 Span dipilih, dihapus dan kecepatan sampel efektif Tektronix RSA3300A Series and WCA200A Series

9.3.4. Pengaruh Ranah Frekuensid dan Waktu Terhadap Kecepatan Pencuplikan

Penggunaan penghapusan mengurangi kecepatan efektif pencuplikan mempunyai beberapa konsekuensi untuk parameter penting pengukuran ranah waktu dan frekuensi. Contoh membandingkan span lebar dan sempit ditunjukkan dalam gambar 9-18 dan 9-19. Peraga pengambilan band lebar suatu span frekwensi yang lebar dengan resoluasi ranah frekuensi relative rendah. Dibandingkan terhadap pengabilan lebar band yang lebih sempit, kecepatan Gambar 9-18 Contoh lebar band pengambilan lebar Gambar 9-19 Contoh lebar band pengambilan sempit 15MHz Span lebar 1 kHz Span sempit sampel lebih tinggi dan lebar band resolusi lebih lebar. Dalam ranah waktu, panjang bingkai lebih pendek dan resoluasi waktu leih halus. Panjang rekaman sama dalam istilah jumlah sampel yang disimpan, namun sebagian dari waktu ditampilkan oleh sampel yang lebih pendek. Gambar 9-18. mengilustrasikan lebar pengambilan lebar band dan table 2-2 memberikan contoh dunia riil. Dalam hal kontras., pengambilan sempit lebar band diperagakan sebagai span kecil dari frekuensi dengan resoluasi ranah frekuensi lebih tinggi. Dibandingkan dengan pengambilan lebar lebar band , kecepatan sampel lebih rendah, sementara resolusi lebar band lebih sempit. Dalam ranah waktu, panjang bingkai lebih panjang, resolusi waktu lebih kasar dan dapat disediakan liputan panjang rekaman waktunya bertambah. Gambar 9-19. mengilustrasikan pengambilan sempit lebar band dan table 2-2 memberikan dunia riil. Skala dari jumlah sedemikian seperti resolusi frekuensi terdapat beberapa tingkatan besaran yang berbeda dari pengambilan band lebar. Tabel 9-2: Perbandingan pengaruh perubahan pengaturan span pada ranah frekuensi dan waktu RSA3300A Series and WCA200A Series

9.3.5. Pemicuan Waktu Riil Penganalisa spektrum waktu riil

menambah kuat spektrum ranah waktu dan analisis modulasi. Pemicuan kritis untuk pengambilan informasi ranah waktu. RSA menawarkan fungsi pemicuan unik, memberikan daya dan picu topeng frekuensi sebaik picu ekstenal pada umumnya dan didasarkan pada tingkatan picu. Pada umumnya sistem picu digunakan dalam osiloskop kebanyakan. Dalam osiloskop analog tradisional, sinyal yang diamati diumpankan ke salah satu masukan sementara picu diumpankan pada yang lain. Picu menyebabkan dimulaianya sapuan horizontal sementara amplitudo dari sinyal ditunjukkan sebagai penganti vertikal yang dilapiskan pada gratikul yang telah dikalibrasi. Bentuk paling sederhana, picu analog memungkinkan terjadi setelah picu untuk diamati, seperti ditunjukkan pada gambar 9-20. Gambar 9-20 Pemicuan waktu rill 9.3.5.1.Sistem Picu dengan Akuisis Digital Kemampuan untuk menampilkan dan memproses sinyal secara digital, digabungkan dengan kapasitas memori yang besar, sehingga memungkinkan menangkap peristiwa yang terjadi sebelum picu, dengan kualitas baik seperti sesudahnya. Sistem akuisisi data dari jenis yang digunakan dalam RSA menggunakan pengubah analog ke digital ADC untuk mengisi kedalaman memori selama sinyal sampel diterima. Secara konsep sampel baru secara terus menerus diumpankan ke memori sementara sampel paling lama diturunkan. Contoh ditunjukkan pada gambar 9-21 suatu memori yang diatur untuk menyimpan N sampel. Pada saat kedatangan picu akuisisi dihentikan, isi memori dibekukan. Penambahan suatu variabel menunda dalam alur sinyal picu memungkinkan peristiwa yang terjadi sebelum picu sebaik yang datang setelah picu. Sinyal picu Sinyal input Gambar 9-21: Pemicuan sistem akuisisi digital Dengan mempertimbangkan kasus yang tidak ada penundaan. Picu menyebabkan terjadinya pembekuan memori segera setelah sampel bersamaan dengan picu disimpan. Memori kemudian berisi sampel pada waktu picu seperti halnya sampel N yang terjadi sebelum picu. Hanya kejadian sebelum picu disimpan. Dengan mempertimbangkan kasus di atas yang mana penundaan diatur secara pasti sesuai dengan setelah picu. Hanya kejadian setelah picu disimpan. Kedua kejadian sebelum dan sesudah picu dapat diambil jika penundaa diatur untuk memecah panjang memori. Jika penundaan diatur setengah dari kedalaman memori, setengah sampel disimpan mendahului picu dan setengah sampel disimpan mengikuti picu. Konsep ini serupa untuk menunda picu digynakan dalam mode span nol dari suatu sapuan SA konvensional. RSA dapat mengambil rekaman yang lebih panjang , bagaimanapun sinyal data ini sesudah itu dapat dianalisa ranah frekwensi, waktu dan modulasi. Piranti ini sangat kuat untuk aplikasi seperti pemantauan sinyal dan piranti pencarian gangguan atau kerusakan.

9.3.5.2. Mode Picu dan Corak

Mode fre-run diperoleh sampel dari sinyal IF yang diterima tanpa pertimbangan kondisi picu. Spektrum modulasi atau pengukuran lain diperagakan sebagaimana adanya diperoleh dan diproses. Mode dipicu memerlukan sumber picu sebagaimana halnya pengaturan variasi parameter yang menegaskan kondisi untuk pemicuan sebagaimana perilaku instrumen dalam merespon picu. Pemilihan picu tungal atau terus menerus menetukan apakah akuisisi diulangi setiap saat terjadi pemicuan atau dilakukan hanya sekali setiap saat pengukuran. Posisi picu dapat diatur dari 0 sampai 100, memilih sebagian dari blok akuisisi sebelum picu. Pemilihan 10 pengambilan data sebelum picu 110 dari blok yang dipilih dan data sesudah picu 910. Kemiringan memungkinkan pemilihan dari ujung kenaikan, ujung penurunan atau kombinasinya untuk pemicuan. Naik atau turun memungkinkan pengambilan sinyal burts lengkap. Turun dan naik memungkinkan pengambilan celah, dalam cara lain sinyal yang berlanjut .

9.3.5.3. Sumber-sumber Picu RSA

RSA memberikan beberapa metoda picu internal dan eksternal. Tabel 9-2 merupakan rangkuman variasi sumber-sumber picu waktu riil, pengaturannya dan resolusi waktu yang dikaitkan dengan yang lain. Picu eksternal memungkinkan sebuah sinyal TTL eksternal untuk mengendalikan akuisisi. Ini pada umumnya mengendalikan sinyal seperti mengkomando pensaklaran frekuensi dari sistem yang diuji. Sinyal eksternal ini memberi komando akuisisi dari suatu kejadian dalam sistem yang diuji. Picu internal tergantung pada karakteristik sinyal yang sedang diuji. RSA mempunyai kemampuan memicu pada tingkat sinyal yang didigitkan, pada daya sinya setelah penyaringan dan penghapusan atau kejadian dari spectral komponen tertentu dengan menngunakan topeng frekuensi picu. Setiap sumber picu dan mode menawarkan keuntungan spesifik dalam kaitan selektivitas frekuensi, cakupan resolusi waktu dan dinamis. Fungsi unsur yang mendukung pengembangan ini ditunjukkan pada gambar 9-22. Gambar 9-22: Proses pemicuan penganalisa spektrum waktu riil . Tingkat pemicuan sebanding dengan sinyal yang didigitkan pada keluaran dari ADC dengan mengatur pemilih pemakaian. Lebar band penuh dari digit sinyal yang digunakan, ketika pengamatan span sempit yang dikehendaki lebih lanjut penyaringan dan penghapusan. Tingkat pemicuan menggunakan digitisasi kecepatan penuh dan dapat mendeteksi kejadian sesingkat satu sampel pada kecepatan pengambilan sampel penuh. Resolusi waktu dari analisa aliran turun, bagaimanapun dibayasi pada kecepatan efektif pengamblan sampel. Level picu diatur sebagai persentase dari level klip ADC, yaitu nilai biner maksimum semua dalam ondsi logika 1. Ini erupakan kuantisasi linier yang tidak dibingungkan dengan peraga logaritmis, yang diekspresikan dalam dB. Daya pemicuan dihitung dari sinyal setelah penyaringan dan penghapuan sinyal. Daya setiap pasangan disaring dari sampel IQ I2Q2 dibandingkan dengan pengaturan daya yang dipilih pemakai. Pengaturan dalam dB relatip terhadap skala penuh dBfs sebagaimana ditunjukkan pada layar logaritmis. Pengaturan dari tempat 0dBfs level picu pada puncak gratikul dan akan membangkitkan sinyal picu bila ADC Power I 2 = Q 2 Frekuensi mask FFT Trigger, timing dan kontrol Trigger eksternal Memori level Power Mask