Penentuan Kapasitas Air Terikat Sekunder

sehingga ba = C-1. Secara lengkap disajikan hasil perhitungan kapasitas air terikat primer pada Tabel 21. Berikut salah satu contoh perhitungan kapasitas air terikat primer untuk BTJNS : hasil plot aw terhadap aw1-aw diperoleh persamaan Y = 0.0157 + 0.2501x a = 0.0157, b = 0.2501 maka ; 0.25010.0157 = C-1 15.93 = C – 1, maka C = 16.93 0.0157 = 1MpC. 16.93 Mp = 10.0157 16.93 Mp = 3.7622 Tabel 21 Hasil perhitungan kapasitas air terikat primer pada produk BTJS BTJNS Parameter Produk a b r 2 C Mp a w primer BTJS 0.0171 0.2514 0.9979 15.7018 3.7244 0.20 BTJNS 0.0157 0.2501 0.9976 16.9299 3.7622 0.20 Pada daerah primer, jumlah air yang terikat sedikit dan melalui ikatan hidrogen yang bernergi besar dan membentuk hidrat dengan molekul lain karbohidrat, protein dan garam terjadi pengikatan molekul air yang mempunyai dua kutub positif dan negatif sehingga sifat dua kutub inilah yang menyebabkan air dapat ditarik oleh molekul lain yang bermuatan positif dan negatif Winarno 1989.

4.7.2.2 Penentuan Kapasitas Air Terikat Sekunder

Untuk menentukan kapasitas air terikat sekunder, yaitu titik peralihan dari air terikat sekunder ke air terikat tersier, dapat digunakan model analisa logaritmik yang dinyatakan oleh Soekarto 1978. Model matematik empirik yang disusun oleh Soekarto 1978 adalah sebagai berikut : log aw − 1 = bM + a dimana : M = kadar air bk, b = faktor kemiringan, a = titik potong pada ordinat Dengan memplot log 1-aw terhadap M akan dihasilkan garis patah yang terdiri dari dua garis lurus. Garis lurus pertama mewakili air ikatan sekunder dan garis lur kedua mewakili air ikatan tersier. Titik potong kedua garis adalah titik peralihan dari air ikatan sekunder ke tersier dan dianggap sebagai batas atas atau kapasitas ikatan air sekunder. Dimana garis pertama diwakili log 1-aw = b 1 M + a 1 maka pada titik potong berlaku rumus b 1 Ms + a 1 = b 2 Ms – a 2 dimana Ms adalah kapasitas air terikat sekunder Soekarto, 1978. Sesuai dengan batas kapasitas air terikat primer, maka dalam penentuan kapasitas air terikat sekunder digunakan nilai kadar air pada aw = 0.22 – 0.9 Gambar 27 28. Berdasarkan hasil perhitungan dengan model analisa logaritma maka diperoleh kapasitas air terikat sekunder BTJS dan BTJNS adalah 10.09 dan 10.15 Tabel 22. Selanjutnya dari persamaan logaritma yang didapatkan maka dapat dihitung nilai as kedua sampel yaitu masing-masing 0.45 BTJS dan 0.46 BTJNS. Dari hasil dapat dikatakan bahwa pada sampel yang diuji mempunyai kemampuan untuk mengikat air masih sangat kuat terbukti dengan nilai as yang masih sangat kecil. Gambar 27 Plot kapasitas air terikat sekunder BTJS, metode logaritma y = 0.0726x - 0.1785 R 2 = 0.9929 y = 0.0238x + 0.3138 R 2 = 0.9545 0.00 0.20 0.40 0.60 0.80 1.00 1.20 0.00 5.00 10.00 15.00 20.00 25.00 30.00 kadar air bk lo g 1 -a w Gambar 28 Plot kapasitas air terikat sekunder BTJNS, metode logaritma Contoh perhitungan nilai Ms : hasil plot logaritma kapasitas air terikat sekunder untuk BTJNS adalah dua persaman berikut : Y = 0.0709x – 0.1773 r 2 = 0.9944 dan Y = 0.0238x + 0.3009 r 2 = 0.9781. Dari 2 persamaan ini maka diperoleh titik potong yang menunjukkan batas kapasitas air terikat sekunder titik potong 1 dan 2, maka x 1 = x 2 = Ms adalah : 0.0709x 1 – 0.1773 = 0.0238x 2 + 0.3009 0.0471Ms = 0.4782 Ms = 10.15 Tabel 22 Hasil perhitungan kapasitas air terikat sekunder pada produk BTJS BTJNS Sampel Parameter BTJS BTJNS a 1 -0.1785 -0.1773 b 1 0.0726 0.0709 r 2 1 0.9944 0.9944 a 2 0.3138 0.3009 b 2 0.0238 0.0238 r 2 2 0.9545 0.9781 M s 10.0881 10.153 a s 0.45 0.46

4.7.2.3 Penentuan Kapasitas Air Terikat Tersier