MENEMUKAN KONSEP HIMPUNAN SEMESTA

Matematika 15 2 Seluruh makanan yang dipesan keluarga Pak Zulkarnaen adalah ikan bakar, udang goreng, jus alpukat, ikan asam manis, bakso, jus terong belanda, ikan bakar, bakso, jus alpukat, bakso, jus terong belanda, mie goreng, jus sirsak. 3 Jika makanan yang sama dituliskan hanya satu kali, maka himpunan makanan yang dipesan keluarga Pak Zulkarnaen adalah ikan bakar, udang goreng, jus alpukat, ikan asam manis, bakso, jus terong belkamu, mie goreng, jus sirsak. Perhatikan alternatif penyelesaian Masalah 1.3 di atas. Banyak anggota suatu himpunan yang berbeda disebut kardinalitas himpunan itu. Perhatikan kembali himpunan P dan Q berikut. P = {5, 10, 15, 20} Q = {a, b, c, d, e} Dari kedua himpunan tersebut kita temukan hal berikut. ● Himpunan P memuat 4 anggota yang berbeda maka disebut banyak anggota himpunan P adalah 4 atau sering disebut kardinalitas himpunan P adalah 4, disimbolkan dengan nP = 4. ● Himpunan Q memuat 5 anggota, maka kardinalitas himpunan Q adalah 4, disimbolkan dengan nQ = 4. Sebagai latihanmu: Jika M = {x │x 10, x bilangan bulat positif }, N = {y│y 10, y bilangan bulat positif}, dan P = {1, 1, 2, 2, 2, 2, 3, 4} Tentukanlah kardinalitas himpunan M Tentukanlah kardinalitas himpunan N Tentukanlah kardinalitas himpunan P Berapakah banyak anggota himpunan N? Berilah pendapatmu Berdiskusilah dengan temanmu, apa perbedaan kardinalitas himpunan M dan himpunan N?

5. MENEMUKAN KONSEP HIMPUNAN SEMESTA

Masalah-1.6 Dari empat orang siswa Batara, Simon, Sudraja, Marsius yang memiliki kesempatan sama untuk memenangkan suatu hadiah undian. Agar salah satu dari keempat siswa dipilih secara adil menjadi pemenang, maka panitia memberikan satu dari empat pertanyaan tentang himpunan yang tersedia dalam kotak undian. Keempat pertanyaan pada kotak undian itu adalah: 1 menentukan himpunan bilangan cacah yang kurang dari 0; 2 menentukan himpunan bilangan bulat yang lebih dari 0 dan kurang dari 1; 3 menentukan himpunan bilangan ganjil yang habis dibagi 2; 4 menentukan himpunan bilangan prima yang merupakan bilangan genap. Siswa yang mendapat himpunan yang banyak anggotanya tepat satu, maka menjadi pemenang. Setelah pengundian, Batara mendapatkan pertanyaan nomor 2, Simon mendapat pertanyaan nomor 3, Sudraja mendapat pertanyaan nomor 1, dan Marsius mendapat pertanyaan nomor 4. Siapakah siswa yang kemungkinan menjadi pemenang? Berikan alasanmu Kelas VII SMPMTs 16 Perhatikan keempat pertanyaan tersebut Penyelesaian keempat pertanyaan itu adalah sebagai berikut. 1 Bilangan cacah yang kurang dari 0. Ingat kembali bilangan cacah yang telah kamu pelajari waktu SD? Anggota Bilangan cacah yang paling kecil adalah 0, sehingga himpunan yang diperoleh Sudraja adalah himpunan yang tidak memiliki anggota. 2 Bilangan bulat yang lebih dari 0 dan kurang dari 1 Tidak ada satupun bilangan bulat antara 0 dan 1. Dengan demikian himpunan yang diperoleh Batara adalah himpunan yang tidak memiliki anggota. 3 Bilangan ganjil yang habis dibagi 2.Seluruh bilangan ganjil tidak akan habis dibagi dengan 2. Mengapa? Silahkan bertanya kepada gurumu. Dengan demikian himpunan yang diperoleh Simon adalah himpunan yang tidak memiliki anggota. 4 Bilangan prima yang merupakan bilangan genap. Anggota himpunan bilangan prima yang merupakan bilangan genap adalah 2. Dengan demikian himpunan yang diperoleh Marsius adalah himpunan yang banyak anggotanya tepat satu, yaitu {2}. Dari hasil undian untuk menjawab pertanyaan menentukan himpunan yang anggotanya tepat satu, diperoleh oleh Marsius. Dengan demikian Marsius terpilih menjadi pemenang. Perhatikan himpunan-himpunan yang diberikan berikut. a R adalah himpunan semua manusia yang memiliki tinggi badan 100 meter. b S adalah himpunan semua nama-nama hari yang dimulai dari huruf B. c T adalah himpunan semua bilangan prima yang kurang dari 2. ● Dapatkah kamu menyebutkan anggota himpunan R, S, dan T? ● Apa kesimpulan yang dapat kamu tarik dari ketiga himpunan itu? Himpunan R, S, dan T adalah himpunan-himpunan yang tidak memiliki anggota. Himpunan yang tidak mempunyai anggota disebut himpunan kosong, dilambangkan dengan “Ø” atau { }. Sebagai latihanmu: Buatlah contoh himpunan dalam kehidupan sehari-hari yang tidak memiliki anggota

6. RELASI HIMPUNAN a. Menemukan Konsep Himpunan Bagian