Substitusi pada Bentuk Aljabar

92 Matematika Konsep dan Aplikasinya 1 Kerjakan soal-soal berikut di buku tugasmu. 1. Jika a = 6 dan b = –1, tentukan nilai dari bentuk aljabar berikut. a. a 2 + 2 ab + b 2 b. a 2 b – ab 2 + a 2 b 2 c. 2a + 2a 2 b 2 + 3 ab 2 + b 3 d. a 4 + 4a 3 b + 6 a 2 b 2 + 4ab 3 + b 4 e. 3a 2 – 2 b + ab f. 2a 3 – 3a 2 + ab – 5 2. Hitunglah nilai p 2 – 2qr + 3p jika a. p = –1, q = 2, dan r = –3; b. p = –2, q = 3, dan r = 1; c. p = 1, q = 5, dan r = –2; d. p = 3, q = 2, dan r = –5. 3. Tentukan KPK dari bentuk aljabar berikut. a. 15ab dan 20ab b. 10a 2 b 3 c dan 15 b 2 c 2 d c. 24p 2 q, 36p 3 q 2 , dan 60 pqr d. 16pq 2 r, 30qr 2 s 2 , dan 36 p 3 r 2 s 5 4. Tentukan FPB dari bentuk aljabar berikut. a. 2x dan –3 x 2 b. 4x 2 y dan 12 xy 2 c. 48a 3 b 5 dan 52a 2 b 3 c 2 d. 12pq, 6q 2 r, dan 15p 2 qr

C. PECAHAN BENTUK ALJABAR

Di bagian depan kalian telah mempelajari mengenai bentuk aljabar beserta operasi hitungnya. Pada bagian ini kalian akan mempelajari tentang pecahan bentuk aljabar, yaitu pecahan yang pembilang, atau penyebut, atau kedua-duanya memuat bentuk aljabar. Misalnya 2 4 3 3 dan 2 7 a a m x p bc n x y , , , , .

1. Menyederhanakan Pecahan Bentuk Aljabar

Suatu pecahan bentuk aljaba r dikatakan paling sederhana apabila pembilang dan penyebutnya tidak mempunyai faktor persekutuan kecuali 1, dan penyebutnya tidak sama dengan nol. Untuk menyederhanakan pecahan bentuk aljabar dapat dilakukan dengan cara membagi pembilang dan penyebut pecahan tersebut dengan FPB dari keduanya. Menumbuhkan inovasi Berdasarkan contoh di atas, buatlah kesimpulan mengenai cara menentukan KPK dan FPB dari bentuk aljabar. Diskusikan hal ini dengan temanmu. 93 Operasi Hitung Bentuk Aljabar Sederhanakan pecahan bentuk aljabar berikut, jika x, y z 0. a. 2 3 6 x x y b. 2 3 2 4 2 x yz xy Penyelesaian: a. FPB dari 3x dan 6x 2 y adalah 3x, sehingga 2 2 3 3 :3 6 6 :3 1 2 x x x x y x y x xy Jadi, bentuk sederhana dari 2 3 6 x x y adalah 1 . 2xy b. FPB dari 4x 2 yz 3 dan 2xy 2 adalah 2xy, sehingga 2 3 2 3 2 2 3 4 4 : 2 2 2 : 2 2 x yz x yz xy xy xy xy xz y

2. Operasi Hitung Pecahan Aljabar dengan Penyebut Suku Tunggal

a. Penjumlahan dan pengurangan Pada bab sebelumnya, kalian telah mengetahui bahwa hasil operasi penjumlahan dan pengurangan pada pecahan diperoleh dengan cara menyamakan penyebutnya, kemudian menjumlahkan atau mengurangkan pembilangnya. Kalian pasti juga masih ingat bahwa untuk menyamakan penyebut kedua pecahan, tentukan KPK dari penyebut-penyebutnya. Dengan cara yang sama, hal itu juga berlaku pada operasi penjumlahan dan pengurangan bentuk pecahan aljabar. Perhatikan contoh berikut. Sederhanakan penjumlah- an atau pengurangan pe- cahan aljabar berikut. 1. 1 5 2 3 p q Penyelesaian: 1. 1 5 2 3 1 3 5 2 2 3 3 2 3 10 6 6 3 10 6 u u u u p q q p p q q p q p pq pq q p pq