Melukis Garis Singgung Melalui Suatu Titik di Luar Lingkaran Menentukan Panjang Garis Singgung Lingkaran dari Satu Titik di Luar Lingkaran
4. Layang-Layang Garis Singgung
Perhatikan Gambar 7.11. A B P O Gambar 7.11 175 Garis Singgung Lingkaran Pada gambar tersebut tampak bahwa garis PA dan PB adalah garis singgung lingkaran yang berpusat di titik O. Dengan demikian OAP = OBP dan AP = BP dengan garis AB merupakan tali busur. Perhatikan OAB. Pada OAB, OA = OB = jari-jari, sehingga OAB adalah segitiga sama kaki. Sekarang, perhatikan ABP. Pada ABP, PA = PB = garis singgung, sehingga ABP adalah segitiga sama kaki. Dengan demikian, segi empat OAPB terbentuk dari segitiga sama kaki OAB dan segitiga sama kaki ABP dengan alas AB yang saling berimpit. Oleh karena itu, kita dapat mengatakan bahwa segi empat OAPB merupakan layang-layang. Karena sisi layang- layang OAPB terdiri dari jari-jari lingkaran dan garis singgung lingkaran, maka segi empat OAPB disebut layang-layang garis singgung. a. Dua garis singgung lingkaran yang melalui titik di luar lingkaran dan dua jari-jari yang melalui titik singgung dari kedua garis singgung tersebut membentuk bangun layang- layang. b. Layang-layang yang terbentuk dari dua garis singgung lingkaran dan dua jari-jari yang melalui titik singgung dari kedua garis singgung tersebut disebut layang-layang garis singgung. Gambar 7.12 Perhatikan gambar di atas. Dari titik P di luar lingkaran yang berpusat di titik O dibuat garis singgung PA dan PB. Jika panjang OA = 9 cm dan OP = 15 cm, hitunglah Penyelesaian: Perhatikan OAP. a. OAP siku-siku di titik A, sehingga 2 2 2 2 2 AP OP OA 15 9 225 81 144 AP 144 12 cm A B P OParts
» Persamaan Garis Lurus Sistem Persamaan Linear Dua Variabel
» Variabel PENGERTIAN KOEFISIEN, VARIABEL,
» Konstanta PENGERTIAN KOEFISIEN, VARIABEL,
» Penjumlahan dan Pengurangan PENGERTIAN KOEFISIEN, VARIABEL,
» Perkalian PENGERTIAN KOEFISIEN, VARIABEL,
» Perpangkatan Bentuk Aljabar PENGERTIAN KOEFISIEN, VARIABEL,
» Pembagian PENGERTIAN KOEFISIEN, VARIABEL,
» Bentuk Selisih Dua Kuadrat x Bentuk x
» Bentuk ax PEMFAKTORAN BENTUK ALJABAR
» Bentuk ax a PEMFAKTORAN BENTUK ALJABAR
» Penjumlahan dan Pengurangan Pecahan Aljabar
» Kerjakan soal-soal berikut di buku tugasmu.
» Cara Menyajikan Suatu Relasi
» Menyatakan Fungsi dalam Diagram Panah, Diagram
» Menentukan Banyaknya Pemetaan yang Mungkin dari Dua Himpunan
» MENENTUKAN RUMUS FUNGSI JIKA
» MENGHITUNG NILAI PERUBAHAN FUNGSI
» GRAFIK FUNGSIPEMETAAN Bangun Ruang Sisi Datar Limas dan Prisma Tegak
» Jawablah pertanyaan-pertanyaan berikut dengan singkat dan tepat.
» Menggambar Grafik Persamaan Garis Lurus y = mx + c pada Bidang Cartesius
» y Gradien Suatu Garis yang Melalui Titik Pusat O0, 0 dan Titik
» Gradien Garis yang Melalui Dua Titik x
» Mengenal Gradien Garis Tertentu
» Persamaan Garis yang Melalui Sebuah Titik x Persamaan Garis yang Melalui titik x
» Persamaan Garis yang Melalui x
» Persamaan Garis yang Melalui Dua Titik Sebarang x
» Menggambar Garis yang Melalui Titik x
» Kedudukan Dua Garis pada Bidang Menentukan Koordinat Titik Potong Dua Garis
» Pengertian Persamaan Linear Dua Variabel
» Penyelesaian Persamaan Linear Dua Variabel
» Metode Grafik SISTEM PERSAMAAN LINEAR DUA
» Metode Eliminasi SISTEM PERSAMAAN LINEAR DUA
» Metode Substitusi SISTEM PERSAMAAN LINEAR DUA
» Metode Gabungan SISTEM PERSAMAAN LINEAR DUA
» MEMBUAT MODEL MATEMATIKA DAN
» Luas Persegi dan Luas Segitiga Siku-Siku Menemukan Teorema Pythagoras
» Kebalikan Teorema Pythagoras untuk Menentukan Jenis Suatu Segitiga
» Tripel Pythagoras TEOREMA PYTHAGORAS
» Perbandingan Sisi-Sisi pada Segitiga Siku-Siku dengan Sudut Khusus
» Penggunaan Teorema Pythagoras pada Bangun Datar dan Bangun Ruang
» Pengertian Lingkaran LINGKARAN DAN BAGIAN-BAGIANNYA
» Menghitung Luas Lingkaran LINGKARAN DAN BAGIAN-BAGIANNYA
» Menghitung Perubahan Luas dan Keliling Lingkaran Jika Jari-Jari Berubah
» Hubungan Sudut Pusat, Panjang Busur, dan Luas Ju- ring
» Hubungan Sudut Pusat dan Sudut Keliling
» Pengertian Segi Empat Tali Busur Sifat-Sifat Segi Empat Tali Busur
» Pengertian Garis Singgung Lingkaran
» Melalui Suatu Titik pada Lingkaran Hanya Dapat Dibuat Satu Garis Singgung pada Lingkaran Tersebut
» Melukis Garis Singgung Melalui Suatu Titik pada Lingkaran
» Layang-Layang Garis Singgung MENGENAL SIFAT-SIFAT GARIS SINGGUNG
» KEDUDUKAN DUA LINGKARAN Bangun Ruang Sisi Datar Limas dan Prisma Tegak
» Melukis Garis Singgung Persekutuan Dalam Dua Lingkaran
» Panjang Garis Singgung Persekutuan Dalam Dua Lingkaran
» MENENTUKAN PANJANG SABUK LILITAN
» Mengenal Berbagai Macam Bangun Ruang Mengenal Sisi, Rusuk, dan Titik Sudut Kubus maupun Balok
» Bangun dari Sisi Kubus dan Balok
» Rusuk-Rusuk yang Sejajar pada Bangun Ruang
» Mengenal Diagonal Bidang, Diagonal Ruang, dan Bidang Diagonal
» Model Kerangka Kubus dan Balok
» Jaring-Jaring Kubus dan Balok
» Luas Permukaan Kubus dan Balok
» Prisma BANGUN RUANG PRISMA DAN LIMAS
» Limas BANGUN RUANG PRISMA DAN LIMAS
» Diagonal Bidang, Diagonal Ruang, dan Bidang Diagonal pada Prisma
» Banyak Sisi, Rusuk, dan Titik Sudut Prisma Tegak dan Limas Beraturan
» Jaring-Jaring Prisma JARING-JARING PRISMA DAN LIMAS
» Jaring-Jaring Limas Melukis Prisma Tegak dan Limas Beraturan
» Luas Permukaan Prisma LUAS PERMUKAAN PRISMA DAN LIMAS
» Luas Permukaan Limas LUAS PERMUKAAN PRISMA DAN LIMAS
Show more