Melukis Garis Singgung Melalui Suatu Titik pada Lingkaran

173 Garis Singgung Lingkaran

2. Melukis Garis Singgung Melalui Suatu Titik di Luar Lingkaran

Lukislah sebuah lingkaran dengan titik pusat di O dan titik A berada di luar lingkaran. Lukislah garis singgung lingkaran yang melalui titik A di luar lingkaran. Langkah-langkah melukis garis singgung melalui suatu titik di luar lingkaran sebagai berikut. a. Lukislah lingkaran titik pusat di O dan titik A di luar lingkaran. b. Hubungkan titik O dan A. c. Lukis busur lingkaran dengan pusat di titik O dan titik A sehingga saling berpotongan di titik B dan titik C. d. Hubungkan BC sehingga memotong garis OA di titik D. e. Lukis lingkaran berpusat di titik D dan berjari-jari OD = DA sehingga memotong lingkaran pertama di dua titik. Namailah dengan titik E dan F. f. Hubungkan titik A dengan titik E dan titik A dengan titik F. Garis AE dan EF merupakan dua garis singgung lingkaran melalui titik A di luar lingkaran. Berdasarkan uraian di atas dapat disimpulkan sebagai berikut. Melalui sebuah titik di luar lingkaran dapat dibuat dua garis singgung pada lingkaran tersebut.

3. Menentukan Panjang Garis Singgung Lingkaran dari Satu Titik di Luar Lingkaran

Pada pembahasan yang lalu kalian telah mempelajari mengenai teorema Pythagoras. Untuk menentukan panjang garis singgung lingkaran, kalian dapat memanfaatkan teorema ini. A B C D O Gambar 7.9 A O A B C O O A A B C D E F O A B C D E F O a b c d e f 174 Matematika Konsep dan Aplikasinya 2 Perhatikan uraian berikut. Pada Gambar 7.10 di samping, lingkaran berpusat di titik O dengan jari-jari OB dan OB A garis AB. Garis AB adalah garis singgung lingkaran melalui titik A di luar lingkaran. Perhatikan segitiga siku-siku ABO. Dengan teorema Pythagoras berlaku 2 2 2 2 2 2 2 2 OB AB OA AB OA OB AB OA OB Panjang garis singgung lingkaran AB = 2 2 OA OB . A B O Gambar 7.10 Diketahui lingkaran berpu- sat di titik O dengan jari- jari OB = 5 cm. Garis AB adalah garis singgung ling- karan yang melalui titik A di luar lingkaran. Jika jarak OA = 13 cm maka a. gambarlah sketsanya; b. tentukan panjang garis singgung AB. Penyelesaian: a. Sketsa b. 2 2 2 2 AB OA OB 13 5 169 25 144 12 Jadi, panjang garis singgung AB = 12 cm. A B O 13 cm 5 c m

4. Layang-Layang Garis Singgung

Perhatikan Gambar 7.11. A B P O Gambar 7.11