Kunci: E Kunci: E Kunci: E Kunci: C Kunci: C Kunci: D Kunci: C

33 Kunci Jawaban dan Pembahasan Soal Pemantapan Ujian Nasional y 1 x y 2 x 2 y x 2 2 3 2 2 3 2 3 2 3 6 2 6 1 1 6 3 2 8 9 2 12 9 18 3 2 1 1 5 7 13 20 3 2 6 L x x x dx x x dx x x x º »¼ § · § · ¨ ¸ ¨ ¸ © ¹ © ¹ ³ ³

22. Kunci: D

Titik potong: x 2 x x 2 x 0 x x 1 0 x 0 atau x 1 1 2 1 2 2 1 2 2 2 1 3 5 1 1 1 1 2 3 5 3 5 15 V y y dx x x dx x x S S S S S ª º ª º « » « » ¬ ¼ ¬ ¼ ³ ³

23. Kunci: C

` 2 2 2 2 sin 1 cos 2 2 1 1 cos 2 sin 2 2 2 2 1 1 sin 2 sin 0 2 2 2 2 V y dx x dx x dx x dx x x S S S S S S S S S S S S S S S º § · ¨ ¸» © ¹¼ ³ ³ ³ ³ Jadi, volume benda putar yang terjadi adalah 2 1 2 S satuan volume.

24. Kunci: A

Gunakan cara substitusi 2 2 9 9 x x dx x x dx ³ ³ Misalkan: u 2 9 2 2 9 x u x Ÿ 2u du 2x dx Ÿ u du x dx Jadi integral di atas dapat diganti menjadi: 2 2 3 3 2 2 2 9 1 1 9 3 3 1 9 9 3 x x dx u u du u du u c x c x x c ˜ ˜ ³ ³ ³

25. Kunci: D

Misalkan: u x 2x 3 x 2 5x 6 du dx 2x 5 du 2x 5 dx 2 du 10 4x dx 1 3 1 3 2 2 3 3 2 2 3 2 2 3 2 3 2 3 5 6 du u du u u c u c x x c Ÿ § · ˜ ¨ ¸ ¨ ¸ © ¹ ³ ³

26. Kunci: C

Misalkan u 9 x 3 o du 3x 2 dx 1 3 du x 2 dx º º » » » »¼ ¼ º » » » ¼ º » ¼ ³ ³ 3 2 2 3 2 2 2 1 2 1 2 2 1 2 2 3 1 1 1 3 3 1 2 2 3 3 2 39 2 3 9 2 2 3 9 8 3 9 2 2 6 2 4 3 9 9 9 9 du u du u u u x x 6 6 2 3 2 3 3 1 3 3 3 2 27 72 54 9 2 1 1 18 4 22 satuan luas 2 2 L x x dx x x º »¼ § · ¨ ¸ © ¹ ³

21. Kunci: E

Titik perpotongan: x 2 2x x 6 x 2 x 6 0 x 3x 2 0 x 3 atau x 2 y y x 2 2x y x 16 x S x y y sin x ; 0 d x d S Daerah D diputar mengelilingi sumbu-x sejauh 360°. Volume benda putar yang terjadi: 34 Cara Mudah Menghadapi Ujian Nasional dan SPMB 2007 Matematika SMA y x y ax b O 4 8

27. Kunci: E

³ ³ ³ ³ ³ 1 2 3 2 3 1 2 2 3 1 2 2 3 2 1 3 3 2 3 2 2 2 2 3 3 3 4 4 1 1 1 4 1 2 2 1 1 2 2 3 3 1 3 1 x dx x x dx x d x x x x x d x y y dy c y c x c x c

28. Kunci: E

f x ax b melalui 4, 0 maka 4a b .......... 1 Luas daerah yang diarsir b 4 8 4 4 ax b dx x b dx ³ ³ b 8 2 2 2 4 2 2 a ax x bx bx ª º ª º « » « » ¬ ¼ ¬ ¼ b 2a 2b 32a 8b 8a 4b b 2a 2b 32a 8b 8a 4b b 22a 2b 3 11a b ........... 2 Dari Persamaan 1 dan 2 4a b 0 11a b 3 15a 3 a 1 5 Substitusi a 1 5 ke 1 1 4 5 4 4 5 5 b b b § · ¨ ¸ © ¹ Ÿ Jadi, fx 1 4 5 5 x .

29. Kunci: C

V yang diarsir setelah diputar terhadap sumbu-y adalah 3 2 2 1 2 3 3 3 2 9 2 4 4 8 8 V x x dy y y y dy dy y S S S S S § · ª º ¨ ¸ ¬ ¼ © ¹ ³ ³ ³ y y 4x 2 y 2x 2 y 3 x

30. Kunci: C

1 2 8 2 2 8 2 2 c c c c V V x dy x dy y y dy dy S S ³ ³ ³ ³ 8 2 2 2 2 2 2 1 1 4 4 16 4 4 16 2 32 4 2 c y y c c c c c º º » » ¼ ¼ y y 2x 2 y 8 x R 2 R 1 y c BAB 16 Program Linear

1. Kunci: D

i x t 0 iii x 2y d 4 Ubah dulu ke bentuk persamaan x 2y 4 Ambil titik x 2y 4 2y 4 Ÿ y 2 o 0, 2 Ambil titik y x 0 4 x 4 Ÿ 4, 0 Dari i, ii, dan iii diperoleh grafik berikut. ii y t 0

2. Kunci: C

Jeruk Apel x y Laba 300 200 x Laba maksimum 300x 200y i 1.200x 1.000y 340.000 ii x y 300 ii y 300 x y x O 2 4 HP y x O y x O 35 Kunci Jawaban dan Pembahasan Soal Pemantapan Ujian Nasional x Titik potong kedua garis 4x 2y 60 u 1 4x 2y 60 2x 4y 48 u 2 4x 8y 96 6y 36 y 6 Substitusi nilai y ke salah satu persamaan. 4x 2y 60 œ 4x 26 60 4x 60 12 4x 48 x 12 x Nilai optimum dari z 6x 8y Uji titik pojok Titik pojok Fungsi sasaran 15, 0 615 80 90 0, 12 60 812 96 12, 6 612 86 120 o Maksimum Jadi, nilai maksimum dari pertidaksamaan tersebut adalah 120.

6. Kunci: A