Perkembangan Pendugaan Area Kecil
2. Perkembangan Pendugaan Area Kecil
Penduga parameter yang efisien untuk suatu area kecil merupakan tujuan penting dalam pendugaan area kecil. Pendekatan klasik untuk menduga parameter area kecil didasarkan pada model desain penarikan contoh design‐ based . Adakalanya kita memiliki informasi tambahan yang dapat digunakan untuk pendugaan pada area kecil. Dalam beberapa kasus kita bisa memperoleh nilai parameter yang menjadi perhatian dari area kecil lain yang memiliki karakteristik serupa, atau nilai pada waktu yang lalu, atau nilai dari peubah yang memiliki hubungan dengan peubah yang sedang diamati. Metode dengan memanfaatkan informasi tambahan tersebut secara statistik memiliki sifat ”meminjam kekuatan” borrowing strength dari hubungan antara nilai peubah respon dan informasi tambahan tersebut. Metode ini memiliki sejarah yang panjang tetapi baru mendapat perhatian dalam beberapa dekade terakhir untuk digunakan sebagai pendekatan pada pendugaan area kecil. Dalam hal ini, dua ide utama digunakan untuk mengembangkan model untuk pendugaan area kecil yaitu 1 asumsi bahwa keragaman didalam area kecil peubah respon dapat diterangkan seluruhnya oleh hubungan keragaman yang bersesuaian pada informasi tambahan, kemudian disebut model pengaruh tetap fixed effect models , dan 2 asumsi keragaman specifik area kecil tidak dapat diterangkan oleh informasi tambahan dan merupakan pengaruh acak area kecil random effect . Gabungan dari dua asumsi tersebut membentuk model pengaruh campuran mixed models. Model campuran memiliki aplikasi dengan cakupan luas. Salah satu sifat yang menarik adalah kemampuannya dalam menduga kombinasi linear dari 904 pengaruh tetap dan pengaruh acak. Dewasa ini, beberapa pendekatan penting telah dikembangkan untuk menyelesaikan kombinasi linear pengaruh tetap dan pengaruh acak walau hampir semua pendekatan untuk pengaruh acak diasumsikan memiliki sebaran normal. Schall 1991, Breslow dan Clayton 1993, McGilchrist dan Aisbett 1991, McGilchrist 1994 mengembangkan EBLUP untuk model linear terampat generalized linear models. Wolfinger 1993 dan Wolfinger dan O’Connell 1993 membangun algoritma perhitungan dengan pendekatan yang berbeda. Tiga pendekatan likelihood yang digunakan Solomon dan Cox 1992 dibandingkan oleh Breslow dan Lin 1995 dan Lin dan Breslow 1996. Zeger dan Karim 1991 memperkenalkan pendekatan Gibbs sampling untuk penyelesaian model campuran. Teknik komputasi Monte Carlo EM MCEM dan Monte Carlo Newton‐Raphson MCNR masing‐masing digunakan McCulloch 1994 dan McCulloch 1997. Model campuran telah digunakan untuk meningkatkan akurasi pendugaan pada kasus area kecil berdasarkan data survey dan data sensus oleh Fay dan Herriot 1979, Ghosh dan dan Rao 1994, Rao 1999, Pfeffermann 1999, Kubokawa 2006 serta Jiang dan Lahiri 2006. Pada aplikasi ini, model campuran diturunkan dari konsep bahwa vektor nilai populasi terbatas yang merupakan realisasi dari superpopulasi. Dalam kasus ini, pendugaan rataan area kecil ekuivalen dengan pendugaan dari perwujudan pengaruh acak area yang tidak diobservasi dalam model campuran untuk sebaran superpopulasi yang dicari rataannya.3. Generalized Regression
Parts
» Staff Site Universitas Negeri Yogyakarta
» Dr. Djaelani 3. Dr. Rusgianto HS Sahid, M.Sc.
» Pendahuluan Staff Site Universitas Negeri Yogyakarta
» Statistika Staff Site Universitas Negeri Yogyakarta
» Pembahasan Staff Site Universitas Negeri Yogyakarta
» Rancangan Percobaan dan Analisis Variansi
» Kesimpulan Staff Site Universitas Negeri Yogyakarta
» Perumusan Tinjauan Pustaka PENDAHULUAN
» Tujuan Penelitian Manfaat Penelitian
» HASIL Staff Site Universitas Negeri Yogyakarta
» Belajar T I N J A U A N P U S T A K A
» Pendekatan Mathematics Problem Solving
» SWiSHmax T I N J A U A N P U S T A K A
» Populasi dan Sampel Desain Penelitian
» Metode Pengumpulan Data Instrumen Penelitian Teknik Analisis Data
» Simpulan Saran S I M P U L A N D A N S A R A N
» Pemahaman Matematika Model Belajar Kooperatif Tipe Student Team Achievement Division
» Model Belajar Kooperatif Tipe Teams Games Tournament TGT Model Belajar Kelompok Tipe Jigsaw
» LANDASAN TEORI Teknik Sampling
» Populasi dan Sampel Variabel Penelitian Deskriptif Data Uji
» British context: the works of David Tall
» Taiwaness Context: the works of Fou Lai Lin
» Singapore Staff Site Universitas Negeri Yogyakarta
» Malaysian Staff Site Universitas Negeri Yogyakarta
» Indonesian Staff Site Universitas Negeri Yogyakarta
» Metode Eksperimen Hasil Pengembangan Perangkat Pembelajaran
» Simpulan Saran Staff Site Universitas Negeri Yogyakarta
» Metakognitif Pembelajaran Matemátika dengan Pendekatan Metakognitif
» Kemampuan Pemecahan Masalah Pembahasan
» Pembelajaran Matematika dengan Pendekatan Metakognitif dalam
» Pentutup Staff Site Universitas Negeri Yogyakarta
» Pelaksanaan Siklus 2 Staff Site Universitas Negeri Yogyakarta
» Instrumen Skala Sikap Format Observasi Format Wawancara Tes Pengetahuan Penunjang
» Data Hasil Non Tes Kemampuan Pengetahuan Penunjang
» Kemampuan Koneksi Matematik KKM Siswa
» g dan i berturut‐turut dibagi s hasilnya p dan q t, y, dan s bilangan prima.
» Latar belakang Staff Site Universitas Negeri Yogyakarta
» Peran guru dalam proses pembelajaran Proses pembelajaran sentra
» Perkembangan Psikososial Perkembangan Bahasa dan Komunikasi Perkembangan Seni
» Identifikasi fokus masalah. Pengumpulan data. Analisis dan interpretasi data. Penyusunan rencana.
» Pelaksanaan. Pembelajaran Kooperatif Tipe Teams‐Games‐Tournaments TGT
» Pendidikan Lingkungan Hidup Konsep Sekolah Berwawasan Lingkungan
» Sikap Ramah Lingkungan Staff Site Universitas Negeri Yogyakarta
» Proses dan Kualitas Pembelajaran
» Perkuliahan Komputasi Statistik Staff Site Universitas Negeri Yogyakarta
» Sisi – Sisi Metakognitif Staff Site Universitas Negeri Yogyakarta
» Kesadaran diri dari proses berpikir seseorang
» Kontrol atau monitoring diri dari proses berpikir seseorang
» Latar Belakang Masalah Pembelajaran Matematika dengan Pendekatan Metakognitif
» Rumusan Masalah Tujuan Penelitian Desain Penelitian
» Populasi dan Sampel Hasil Penelitian
» Kemampuan Berpikir Kreatif Staff Site Universitas Negeri Yogyakarta
» Kesimpulan Rekomendasi Deskripsi Jawaban Siswa
» Dapatkah Staff Site Universitas Negeri Yogyakarta
» Bertukar Pasangan Berpikir ‐ Berpasangan ‐ Berempat
» Berkirim Salam dan Soal . Kepala Bernomor
» Bahasan Himpunan Dua Tinggal Dua Tamu two stay two stray
» Bahasan Statistik Tinjauan Pokok Bahasan Statistik Tingkat SMP Daftar Frekuensi
» Setting Penelitian dan Subyek Penelitian .
» Rencana Tindakan Pelaksanaan Tindakan
» Analisis Hasil Penelitian Keaktifan Siswa Dalam PBM Analisis Hasil Test Prestasi Belajar Siswa
» Analisis Hasil Penelitian Keaktifan Siswa Dalam PBM
» Analisis Hasil Test Prestasi Belajar siswa Kelas VIII SMPN 2 Pringkuku
» Matematika Untuk SMPMTs VIII. Bandung : Sarana Metodologi Penelitian Pendidikan , Penerbit SIC
» Masalah Tujuan Staff Site Universitas Negeri Yogyakarta
» KESIMPULAN Level 4 Ketatrigor: Siswa pada tingkat ini memahami aspek‐aspek formal
» Model Nested Logit Staff Site Universitas Negeri Yogyakarta
» Overlapping Nest Staff Site Universitas Negeri Yogyakarta
» Rancangan Percobaan dan Membangkitkan data
» Model MNL dan model nest logit
» Model Multinomial Probit MNP
» Identifikasi Paramater Staff Site Universitas Negeri Yogyakarta
» Variasi individu Staff Site Universitas Negeri Yogyakarta
» Plotting Data Sampel Penentuan Hipotesis Penaksiran Parameter Uji Anderson‐Darling
» Sampling Proporsi Taksiran Distribusi Kematian
» PENDAHULUAN KESIMPULAN Staff Site Universitas Negeri Yogyakarta
» Pendahuluan RUMUSAN MASALAH Staff Site Universitas Negeri Yogyakarta
» Interval Kepercayaan untuk Kajian Teori
» Kesimpulan Daftar Pustaka Staff Site Universitas Negeri Yogyakarta
» Algoritma untuk menentukan nilai awal Algoritma untuk menentukan nilai awal dengan menggunakan
» A., Mood, A. M. and Boes, D. C., 1963, Introduction To The Theory of
» Latar Belakang Masalah Rumusan Masalah
» Manfaat penelitian Staff Site Universitas Negeri Yogyakarta
» Model Regresi Logistik Staff Site Universitas Negeri Yogyakarta
» Model Neural Networks NN untuk Klasifikasi Data
» Metode Penelitian Persentase Ketepatan Masa Studi Mahasiswa Ketepatan
» Penutup Daftar Pustaka Staff Site Universitas Negeri Yogyakarta
» GRUP TOPOLOGIS Staff Site Universitas Negeri Yogyakarta
» SUBGRUP TOPOLOGIS Staff Site Universitas Negeri Yogyakarta
» GRUP TOPOLOGIS KUOSEN Staff Site Universitas Negeri Yogyakarta
» Asumsi dan Model Inventory Multi‐Item
» Program Nonlinear Probabilistik Hasil Peneltian dan Pembahasan
» Model regresi linier log gamma Estimasi parameter regresi log gamma dengan metode MLE
» Penerapan program pada kasus data tahan hidup
» Aplikasi pada Data Pasien Myeloma Kanker Tulang
» 23‐33. Staff Site Universitas Negeri Yogyakarta
» PENDAHULUAN Latar Staff Site Universitas Negeri Yogyakarta
» METODOLOGI Staff Site Universitas Negeri Yogyakarta
» HASIL DAN PEMBAHASAN Staff Site Universitas Negeri Yogyakarta
» Model Regresi Cox Estimasi Parameter Dalam Model Regresi Cox Menentukan fungsi Partial Likelihood
» APLIKASI DATA REAL Estimasi Fungsi Hazard Dasar
» Estimator Kernel Algoritma dan Program R
» Perkembangan Pendugaan Area Kecil
» Generalized Regression Staff Site Universitas Negeri Yogyakarta
» Pendugaan langsung Pendugaan GREG
» Model Based Design Estimator Pembahasan Hasil Kajian
» Penalized spline merupakan potongan‐potongan polinomial
» Introduction Staff Site Universitas Negeri Yogyakarta
» Pndahuluan Staff Site Universitas Negeri Yogyakarta
» Model Hazard proporsional Semiparametrik Estimasi Generalized Profile Likelihood dalam Model‐Model
» Latar Belakang Tujuan dan Manfaat Penelitian
» Algoritma PageRank Matrik Markov
» Vektor Eigen dan Nilai Eigen Metode Pangkat
Show more