Taksiran Peluang Kematian Taksiran Peluang Tetap Hidup Survive Taksiran Laju Kematian Percepatan Mortalitas Taksiran Harapan Hidup dan Variansi
B. Uji Anderson Darling Distribusi Weibull
Nilai = AD 4,8705, critical value atau = CV 0,757, karena maka hipotesis ditolak dan diterima, artinya umur kematian tidak berdistribusi Weibull. CV AD o H 1 H Setelah dilakukan pengujian hipotesis dengan uji kecocokan Anderson Darling ternyata hipotesis yang diterima adalah umur kematian mengikuti distribusi lognormal, sedangkan asumsi berdistribusi Weibull ditolak. Oleh karena itu untuk pembahasan pada penelitiaan ini hanya menggunakan fungsi padat peluang distribusi lognormal.3.3 Taksiran Peluang Kematian
Peluang kematian pada umur 5 tahun adalah 0,0000000001. Artinya peluang kematian seorang penduduk pada saat 5 tahun sangatlah kecil sedangkan peluang kematian umur 115 tahun adalah 0,9855130003. Artinya peluang kematian seorang penduduk pada saat umur 115 tahun adalah 98,55 . Semakin besar umur atau semakin tua umur seseorang maka peluang kematiannya semakin besar.3.4 Taksiran Peluang Tetap Hidup Survive
Peluang tetap hidup survive seseorang pada umur 5 tahun adalah 0,9999999999. Artinya peluang tetap hidup seorang penduduk pada saat umur 5 tahun adalah 99,99 , sedangkan peluang tetap hidup seseorang pada umur 115 tahun adalah 0,0144869997. Artinya peluang tetap hidup seorang penduduk pada saat umur 115 tahun adalah 1,487 . Semakin besar umur atau semakin tua umur seseorang maka peluang tetap hidup survive semakin kecil.3.5 Taksiran Laju Kematian Percepatan Mortalitas
Percepatan mortalita penduduk pada umur 5 tahun adalah 0, sedangkan percepatan mortalita penduduk pada umur 115 tahun adalah 0,059958. Semakin tua umur seseorang maka percepatan mortalitanya cenderung akan semakin besar. Jika digambarkan dalam bentuk grafik fungsi hazard akan terlihat seperti pada Gambar 2, di mana sifat fungsi hazard untuk distribusi lognormal akan terus naik hingga mencapai maksimum kemudian akan menurun hingga 0 pada . Percepatan mortalita kumulatif penduduk pada umur 5 tahun adalah 0,00 sedangkan percepatan mortalita kumulatif penduduk pada umur 115 tahun adalah 4,234504. Semakin tua umur seseorang maka percepatan mortalita kumulatif cenderung akan semakin besar. ∞ = t Gambar 1. Grafik Fungsi Survival Gambar 2. Grafik Fungsi Hazard Percepatan Mortalita3.6 Taksiran Harapan Hidup dan Variansi
harapan hidup life expectancy seseorang penduduk hasil transformasi dengan distribusi lognormal adalah y Y E μ = = 55,097. Artinya diharapkan seseorang yang lahir dapat tetap hidup rata‐rata hingga mencapai umur 55,097 tahun. Sedangkan Variansi = 20,979 atau simpangan baku sebesar 2 y Y Var σ = = y σ 4,58028.3.7 Taksiran Mean Residual Life
Parts
» Staff Site Universitas Negeri Yogyakarta
» Dr. Djaelani 3. Dr. Rusgianto HS Sahid, M.Sc.
» Pendahuluan Staff Site Universitas Negeri Yogyakarta
» Statistika Staff Site Universitas Negeri Yogyakarta
» Pembahasan Staff Site Universitas Negeri Yogyakarta
» Rancangan Percobaan dan Analisis Variansi
» Kesimpulan Staff Site Universitas Negeri Yogyakarta
» Perumusan Tinjauan Pustaka PENDAHULUAN
» Tujuan Penelitian Manfaat Penelitian
» HASIL Staff Site Universitas Negeri Yogyakarta
» Belajar T I N J A U A N P U S T A K A
» Pendekatan Mathematics Problem Solving
» SWiSHmax T I N J A U A N P U S T A K A
» Populasi dan Sampel Desain Penelitian
» Metode Pengumpulan Data Instrumen Penelitian Teknik Analisis Data
» Simpulan Saran S I M P U L A N D A N S A R A N
» Pemahaman Matematika Model Belajar Kooperatif Tipe Student Team Achievement Division
» Model Belajar Kooperatif Tipe Teams Games Tournament TGT Model Belajar Kelompok Tipe Jigsaw
» LANDASAN TEORI Teknik Sampling
» Populasi dan Sampel Variabel Penelitian Deskriptif Data Uji
» British context: the works of David Tall
» Taiwaness Context: the works of Fou Lai Lin
» Singapore Staff Site Universitas Negeri Yogyakarta
» Malaysian Staff Site Universitas Negeri Yogyakarta
» Indonesian Staff Site Universitas Negeri Yogyakarta
» Metode Eksperimen Hasil Pengembangan Perangkat Pembelajaran
» Simpulan Saran Staff Site Universitas Negeri Yogyakarta
» Metakognitif Pembelajaran Matemátika dengan Pendekatan Metakognitif
» Kemampuan Pemecahan Masalah Pembahasan
» Pembelajaran Matematika dengan Pendekatan Metakognitif dalam
» Pentutup Staff Site Universitas Negeri Yogyakarta
» Pelaksanaan Siklus 2 Staff Site Universitas Negeri Yogyakarta
» Instrumen Skala Sikap Format Observasi Format Wawancara Tes Pengetahuan Penunjang
» Data Hasil Non Tes Kemampuan Pengetahuan Penunjang
» Kemampuan Koneksi Matematik KKM Siswa
» g dan i berturut‐turut dibagi s hasilnya p dan q t, y, dan s bilangan prima.
» Latar belakang Staff Site Universitas Negeri Yogyakarta
» Peran guru dalam proses pembelajaran Proses pembelajaran sentra
» Perkembangan Psikososial Perkembangan Bahasa dan Komunikasi Perkembangan Seni
» Identifikasi fokus masalah. Pengumpulan data. Analisis dan interpretasi data. Penyusunan rencana.
» Pelaksanaan. Pembelajaran Kooperatif Tipe Teams‐Games‐Tournaments TGT
» Pendidikan Lingkungan Hidup Konsep Sekolah Berwawasan Lingkungan
» Sikap Ramah Lingkungan Staff Site Universitas Negeri Yogyakarta
» Proses dan Kualitas Pembelajaran
» Perkuliahan Komputasi Statistik Staff Site Universitas Negeri Yogyakarta
» Sisi – Sisi Metakognitif Staff Site Universitas Negeri Yogyakarta
» Kesadaran diri dari proses berpikir seseorang
» Kontrol atau monitoring diri dari proses berpikir seseorang
» Latar Belakang Masalah Pembelajaran Matematika dengan Pendekatan Metakognitif
» Rumusan Masalah Tujuan Penelitian Desain Penelitian
» Populasi dan Sampel Hasil Penelitian
» Kemampuan Berpikir Kreatif Staff Site Universitas Negeri Yogyakarta
» Kesimpulan Rekomendasi Deskripsi Jawaban Siswa
» Dapatkah Staff Site Universitas Negeri Yogyakarta
» Bertukar Pasangan Berpikir ‐ Berpasangan ‐ Berempat
» Berkirim Salam dan Soal . Kepala Bernomor
» Bahasan Himpunan Dua Tinggal Dua Tamu two stay two stray
» Bahasan Statistik Tinjauan Pokok Bahasan Statistik Tingkat SMP Daftar Frekuensi
» Setting Penelitian dan Subyek Penelitian .
» Rencana Tindakan Pelaksanaan Tindakan
» Analisis Hasil Penelitian Keaktifan Siswa Dalam PBM Analisis Hasil Test Prestasi Belajar Siswa
» Analisis Hasil Penelitian Keaktifan Siswa Dalam PBM
» Analisis Hasil Test Prestasi Belajar siswa Kelas VIII SMPN 2 Pringkuku
» Matematika Untuk SMPMTs VIII. Bandung : Sarana Metodologi Penelitian Pendidikan , Penerbit SIC
» Masalah Tujuan Staff Site Universitas Negeri Yogyakarta
» KESIMPULAN Level 4 Ketatrigor: Siswa pada tingkat ini memahami aspek‐aspek formal
» Model Nested Logit Staff Site Universitas Negeri Yogyakarta
» Overlapping Nest Staff Site Universitas Negeri Yogyakarta
» Rancangan Percobaan dan Membangkitkan data
» Model MNL dan model nest logit
» Model Multinomial Probit MNP
» Identifikasi Paramater Staff Site Universitas Negeri Yogyakarta
» Variasi individu Staff Site Universitas Negeri Yogyakarta
» Plotting Data Sampel Penentuan Hipotesis Penaksiran Parameter Uji Anderson‐Darling
» Sampling Proporsi Taksiran Distribusi Kematian
» PENDAHULUAN KESIMPULAN Staff Site Universitas Negeri Yogyakarta
» Pendahuluan RUMUSAN MASALAH Staff Site Universitas Negeri Yogyakarta
» Interval Kepercayaan untuk Kajian Teori
» Kesimpulan Daftar Pustaka Staff Site Universitas Negeri Yogyakarta
» Algoritma untuk menentukan nilai awal Algoritma untuk menentukan nilai awal dengan menggunakan
» A., Mood, A. M. and Boes, D. C., 1963, Introduction To The Theory of
» Latar Belakang Masalah Rumusan Masalah
» Manfaat penelitian Staff Site Universitas Negeri Yogyakarta
» Model Regresi Logistik Staff Site Universitas Negeri Yogyakarta
» Model Neural Networks NN untuk Klasifikasi Data
» Metode Penelitian Persentase Ketepatan Masa Studi Mahasiswa Ketepatan
» Penutup Daftar Pustaka Staff Site Universitas Negeri Yogyakarta
» GRUP TOPOLOGIS Staff Site Universitas Negeri Yogyakarta
» SUBGRUP TOPOLOGIS Staff Site Universitas Negeri Yogyakarta
» GRUP TOPOLOGIS KUOSEN Staff Site Universitas Negeri Yogyakarta
» Asumsi dan Model Inventory Multi‐Item
» Program Nonlinear Probabilistik Hasil Peneltian dan Pembahasan
» Model regresi linier log gamma Estimasi parameter regresi log gamma dengan metode MLE
» Penerapan program pada kasus data tahan hidup
» Aplikasi pada Data Pasien Myeloma Kanker Tulang
» 23‐33. Staff Site Universitas Negeri Yogyakarta
» PENDAHULUAN Latar Staff Site Universitas Negeri Yogyakarta
» METODOLOGI Staff Site Universitas Negeri Yogyakarta
» HASIL DAN PEMBAHASAN Staff Site Universitas Negeri Yogyakarta
» Model Regresi Cox Estimasi Parameter Dalam Model Regresi Cox Menentukan fungsi Partial Likelihood
» APLIKASI DATA REAL Estimasi Fungsi Hazard Dasar
» Estimator Kernel Algoritma dan Program R
» Perkembangan Pendugaan Area Kecil
» Generalized Regression Staff Site Universitas Negeri Yogyakarta
» Pendugaan langsung Pendugaan GREG
» Model Based Design Estimator Pembahasan Hasil Kajian
» Penalized spline merupakan potongan‐potongan polinomial
» Introduction Staff Site Universitas Negeri Yogyakarta
» Pndahuluan Staff Site Universitas Negeri Yogyakarta
» Model Hazard proporsional Semiparametrik Estimasi Generalized Profile Likelihood dalam Model‐Model
» Latar Belakang Tujuan dan Manfaat Penelitian
» Algoritma PageRank Matrik Markov
» Vektor Eigen dan Nilai Eigen Metode Pangkat
Show more