Introduction Staff Site Universitas Negeri Yogyakarta

On The Mcshane Integral For Riesz‐Spaces‐Valued Functions Defined On Real Line Yosephus D. Sumanto 1 , Muslim ansori 2 1 Mathematics Departement, Universitas Diponegoro Jln.Prof.H. Soedarto,SH,Tembalang,Semarang. Email :sumanto_123yahoo.com 2 Mathematics Departement, Universitas Lampung Jln. Soemantri Brodjonegoro No. 1 Bandar Lampung. Email : ansomathyahoo.com Abstract This paper is a partial result of our researchs in the main topic ʺOn The McShane Integral for Riesz‐ Spaces ‐valued Functions Defined on the space ʺ. We construct McShane integral for Riesz‐spaces‐ valued functions defined on the space by a technique involving double sequences and prove some basic properties among which the fact that our new integral is coincides with the McShane Integral for Banach ‐spaces valued functions defined on space . n R R R Keywords : Riesz Space, McShane Integral

1. Introduction

The recent results of Integral theory were the Henstock‐Kurzweil integral for Riesz‐space‐valued functions defined on bounded subintervals of the real line and with respect to operator‐valued measures was investigated by Riecan1989,1992 and Riecan and Brabelova1996, with respect to D ‐ convergence that is a kind of convergence in which the ε ‐technique is replaced by a technique involving double sequences , see Riecan and Neubrunn1997, with respect to the order convergence, see Boccuto1998 and in Boccuto and Riecan2004 with respect to the order convergence but the Henstock‐Kurzweil integral for Riesz‐space‐valued functions was defined on unbounded subintervals of the real line. The main goal of this paper is to generalize the above results by constructing McShane integral for Riesz‐valued functions defined on Euclidean space by a technique involving double sequences. R Dipresentasikan dalam SEMNAS Matematika dan Pendidikan Matematika 2007 dengan tema “Trend Penelitian Matematika dan Pendidikan Matematika di Era Global” yang diselenggarakan oleh Jurdik Matematika FMIPA UNY Yogyakarta pada tanggal 24 Nopember 2007 2. Preliminary Let be the set of all strictly positive integers, the set of the real numbers, be the set of all strictly positive real numbers. Let N R + R 1 1 2 2 ... a a b a b b . [ ] , a b is called interval or cell. . A collection of intervals ∈ = ⎡ ⎤ ⎣ ⎦ , , , , , 0,1,2,..., i i i i i i a b a b R a b i n [ ] , i i a b is called nonoverlapping if their interiors are dijoint. An additive function on a set is a function defined on the family of all subintervals of such that ⊂ ⎡ ⎤ ⎣ ⎦ , a b R F ⎡⎣ , a b ⎤⎦ ∪ = + F B C F B F C for each pair of nonoverlapping intervals ⊂ ⎡ ⎤ ⎣ ⎦ , , B C a b . A nonnegative additive function on a set is called length on l ⎡⎣ , a b ⎤⎦ ⎡ ⎤ ⎣ ⎦ , a b , defined by [ ] , a b b a = − l . Let be a collection of pairs of { = 1 1 2 2 , , , ,..., , r r P A x A x A x } , i i A x , where are nonoverlapping intervals, 1 2 , ,..., r A A A = = U 1 r i i A A and δ ⊂ , i i i A O x x , where δ , i i O x x is open ball with center i x and radius δ i x , = 1,2,..., i r . We say that is P δ − fine McShane Partition on . A The real vector space with elements is called an ordered vector space if is partially ordered which satisfy : L 1 2 , ,... E E L ≤ ⇒ + ≤ + 1 2 1 2 E E E h E h for every and for every in . If, in addition, is lattice with respect to the partial ordering, then is called a Riesz space. For example, with the familiar coordinate wise addition and scalar multiplication. and by coordinatewise ordering, i.e., for ∈ h L ≥ ⇒ ≥ E kE ≥ 0 k R L L n R = = 1 1 ,..., , ,..., n n x x x y y y , we define, ≤ x y whenever ≤ = , 1,..., k k x y k n , then is a Riesz space. n R Definition 2.1 Zaanen,1996 : A Riesz space is said to be Dedekind complete if every nonempty subset of , bounded from above, has supremum in L . L L SEMNAS Matematika dan Pend. Matematika 2007 928 Definition 2.2 Riecan, 1998 : A bounded double sequence ∈ , , i j i j a L is called regulator or D ‐sequence if, for each ∈ ↓ , , i j i N a , that is and . + ≥ ∀ ∈ , , 1 i j i j a a j N ∈ ∧ = ฀ , i j j a Definition 2.3 Boccuto and Riecan, 2004 : Given a sequence ∈ n n r L . Sequence n n r is said to be D ‐convergence to an element ∈ r L if there exist a regulator , , i j i j a , satisfying the following condition : for every mapping ρ → : N N , denoted by there exists an integer such that ρ ∈ N N n ρ ∞ = − ≤ ∨ , 1 n i i i r r a for all . In this case, the notation is denoted by . ≥ n n = lim n n D r r Definition 2.4 Boccuto and Riecan, 2004 : A Riesz Space is said to be weakly L σ − distributive if for every D ‐ sequence , i j a , then ρ ρ ∞ = ∈ ⎛ ⎞ ∧ ∨ = ⎜ ⎟ ⎝ ⎠ ฀ ฀ , 1 i i i a . Throughout the paper, we shall always assume that is Dedekind complete weakly L σ − distributive Riesz space. Main Results Definition 3.1 : A function [ ] ⊂ → : , f a b R L is said to be McShane integrable denoted by [ ] ∈ l , , , f M a b L , if there exists an element ∈ E L and D ‐sequence such that for every we can find a function ∈ , , i j i j a L ρ ∈ N N [ ] δ + → : , a b R such that Matematika 929 ρ ∞ = = − = − ≤ ∨ ∑ ∑ l l , 1 1 r k r i i i k P f x I E f x I E a for every δ ‐fine M partition [ ] { } { } = = 1 1 2 2 , , , , , ,..., , r r P a b x I x I x I x on [ ] , a b . We note that the McShane integral with respect to is well‐ defined, that is there exists at most one element , satisfying Definition 3.1 and in this case we have l E [ ] = ∫ , a b M fdx E . The uniqueness is given in the following theorem. Theorem 3.2 : If a function [ ] α ∈ , , , f M a b L , then its integral is unique. Proof: Let [ ] ∈ l , , , f M a b L . If both and are McShane integral of function , satisfying Definition 3.1, then there exists two 1 E 2 E f D ‐sequence , , i j i j a and , , i j i j b in such that for every , we can find two positive function L ρ ∈ N N δ 1 and δ 2 on [ ] , a b , respectively, and for every 1 δ ‐fine M‐ partition [ ] { } = 1 , , P a b x and 2 δ ‐fine M‐partition [ ] { } = 2 , , P a b x on , we have A ρ ∞ = − ≤ ∨ ∑ l 1 1 , 1 i i i P f x I E a and ρ ∞ = − ≤ ∨ ∑ l 2 2 , 1 i i i P f x I E b respectively. Let now { } δ δ δ = 1 2 min , x x x , for every ∈ x A and take any δ − fine M‐ partition [ ] { } = , , P a b x on , then A [ ] { } = , , P a b x is both 1 δ ‐fine M‐ partition and 2 δ ‐fine Perron partition on [ ] , a b , and thus we have ρ ρ ρ ρ ρ ∞ ∞ = = ∞ = ∞ = ≤ − ≤ + − + − ≤ ∨ + ∨ ≤ ∨ + ≤ ∨ ∑ ∑ l l 1 2 1 1 2 2 , , 1 1 , , 1 , 1 i i i i i i i i i i i i i i E E P f x I E P f x I E a b a b c where = + ∀ ∈ , , , 2 , i j i j i j c a b i j N . By arbitrariness of , we get ρ ∈ N N SEMNAS Matematika dan Pend. Matematika 2007 930 ρ ρ ∞ = ∈ ⎛ ⎞ ≤ − ≤ ∧ ∨ = ⎜ ⎟ ⎝ ⎠ ฀ ฀ 1 2 , 1 i i i E E c since is , i j c D ‐sequence and thanks to weak σ − distributivity of . Thus , and so our M‐integral is well‐defined. L = 1 E E 2 ฀ ` Now, we give some fundamental properties of l , , M A L . Theorem 3.3 : If ∈ l 1 2 , , f f M A L , and ∈ 1 2 , k k R , then and + ∈ l 1 1 2 2 , , k f k f M A L [ ] [ ] [ ] + = + ∫ ∫ 1 1 2 2 1 1 2 2 , , a b a b a b M k f k f dx k M f dx k M f d ∫ , x . Proof : similar to that M‐integral with values in real spaces. Theorem 3.4 : If [ ] ∈ l , , , f g M a b L, and ≤ f x g x for every ∈ x A , then [ ] [ ] ≤ ∫ ∫ , , a b a b M fdx M gdx . Proof : By hypotesis, there exists two − D sequences, , , i j i j a and , , i j i j b such that, for every , we can find positive functions ρ ∈ N N 1 δ dan 2 δ , respectively on , and whenever A [ ] { } = 1 , , P a b x is δ 1 ‐fine M‐partition and [ ] { } = 2 , , P a b x is δ 2 ‐ fine M‐partition on [ ] , a b , we have [ ] [ ] [ ] ρ ρ ρ ∞ = ∞ ∞ = = − ≤ ∨ ⇔ − ∨ ≤ ≤ + ∨ ∑ ∫ ∑ ∫ ∫ l l 1 , 1 , 1 , , 1 1 , , i i i a b i i i i i i a b a b P f x I M fdx a M fdx a P f x I M fdx a and [ ] [ ] [ ] ρ ρ ρ α α ∞ = ∞ ∞ = = − ≤ ∨ ⇔ − ∨ ≤ ≤ + ∨ ∑ ∫ ∑ ∫ ∫ l l 2 , 1 , 2 , , 1 1 , , i i i a b i i i i i i a b a b P f x I M gd b M gdx b P g x I M gd b Matematika 931 respectively. For every [ ] ∈ , x a b , let { } 1 2 min , x x x δ δ δ = , and take δ ‐fine M‐partition [ ] { } = , , P a b x on [ ] , a b , then [ ] { } = , , P a b x is both δ i ‐fine M‐partition = 1,2 i on [ ] , a b . Thus we get [ ] [ ] ρ ρ ∞ ∞ = = − ∨ ≤ ≤ ≤ + ∨ ∑ ∑ ∫ ∫ l l , , 1 1 , , i i i i i i a b a b M fdx a P f x I P g x I M gdx b and hence, for every , ρ ∈ N N [ ] [ ] ρ ρ ∞ ∞ ∞ = = = − ≤ ∨ + ∨ ≤ ∨ ∫ ∫ , , 1 1 1 , , i i i i i i i i i a b a b M fdx M gdx a b c ρ , where = + ∀ ∈ , , , 2 , i j i j i j c a b i j N . By arbitrariness of , since is a ρ ∈ N N , i j c − D sequence and taking into account of weak σ − distributivity of L , we get [ ] [ ] ρ ρ ∞ = ∈ ⎛ ⎞ − ≤ ∧ ∨ = ⎜ ⎟ ⎝ ⎠ ∫ ∫ ฀ ฀ , 1 , , i i i a b a b M fdx M gdx c that is [ ] [ ] ≤ ∫ ∫ , , a b a b M fdx M gdx . This concludes the proof. ฀ Definition 3.5 Elementary Set: A set [ ] ⊂ , a b R which is union of finite cells is called an elementary set. Every elementary set can be segmented into non‐overlapping cells. If and are elementary sets then and 1 A 2 A ∪ 1 A A 2 1 2 \ A A are also elementary sets. Integration on elementary set can be constructed through the following theorem. Teorema 3.6 : Let and be non‐overlapping intervals in and . If 1 A 2 A R = U 1 A A A 2 ∈ l 1 , , f M A L and , then ∈ l 2 , , f M A L ∈ l , , f M A L and SEMNAS Matematika dan Pend. Matematika 2007 932 = = + ∫ ∫ ∫ U 1 2 1 2 A A A A A M fdx M fdx M fdx Proof : Let ∈ l 1 , , f M A L and ∈ l 2 , , f M A L . There exists two − D sequence , , i j i j a and , , i j i j b , such that for every , we can find positive functions ρ ∈ N N δ 1 and δ 2 on respectively. Whenever A { } = 1 , P A x is δ 1 ‐fine M‐partition on and 1 A { } = 2 , P A x is δ 2 ‐fine M‐partition on , we have 2 A ρ ∞ = − ≤ ∨ ∑ ∫ l 1 1 , 1 i i i A P f x I M fdx a and ρ α ∞ = − ≤ ∨ ∑ ∫ 2 2 , 1 i i i A P f x I M fdx b Let now be such that, δ + → : A R { } δ δ δ δ δ ⎧ ∈ ∉ ⎪ = ∈ ⎨ ⎪ ∈ ⎩ I 1 1 2 2 1 2 1 2 and and min , ∉ 2 1 x if x A x A x x if x A x x x if x A A A for every δ ‐fine M‐partition { } = , P A x on where A = U 1 P P P 2 . Therefore, we get ρ ρ ρ ∞ ∞ ∞ = = = ⎛ ⎞ − + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ≤ − + − ≤ ∨ + ∨ ≤ ∨ ∑ ∫ ∫ ∑ ∑ ∫ ∫ l l l 1 2 1 2 1 2 , , , 1 1 1 A A A A i i i i i i i i i P f x I M fdx M fdx P f x I M fdx P f x I M fdx a b c where is a = + ∀ ∈ , , , 2 , i j i j i j c a b i j N − D sequence. ฀ Matematika 933 Using Theorem 3.6 and Definition 3.5 above, we can see immediately that the following holds. Corrolary 3.7 : Given an elementary set . A function is said to be McShane integrable on , denoted by ⊂ A R → : f A L A ∈ l , , f M A L , if ∈ l , , i f M A L for every i, where and = = U 1 p i i A A { } 1 2 , ,..., r A A A is any nonoverlapping intervals of . The McShane integral of function on is A f A = ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ∑ ∫ ∫ 1 i r i A A M fdx M fdx . We now state version of the Cauchy criterion, where the proof is similar to the one of Ansori 2007. Theorem 3.8 : A function [ ] → : , f a b L is McShane integrable if and only if there exists a − D sequence , , i j i j a in such that, for every we can find a function L ρ ∈ N N [ ] δ + → : , a b R and for every δ − fine M‐ partition [ ] { } = 1 , , P a b x and [ ] { } = 2 , , P a b x on [ ] , a b , we have ρ ∞ = − ≤ ∑ ∑ l l 1 2 , 1 i i i P f x I P f x I a ∨ . We now provide a result about Hentock‐Kurzweil integrability on subcells. SEMNAS Matematika dan Pend. Matematika 2007 934 Theorem 3.9 : Let [ ] ⊂ , a b R . If ∈ l , , f M A L , then ∈ l , , f M B L , for every interval [ ] ⊂ , B a b . Proof : similar to that M‐integral with values in real spaces. By virtue of Theorem 3.9, we define primitif function of McShane integrable function on a cell f [ ] ⊂ , a b R with respect to a volume α as follows. Definition 3.10 : If [ ] ∈ l , , , f M a b L and [ ] , I a b is a collection of all subcells in [ ] , a b , then a function [ ] → : , F I a b L satisfying = ∫ J F J M fdx and φ = 0 F for every interval ∈ J I A is called Primitif of McShane integrable function on f [ ] , I a b . References Ansori, M., 2007. On The Henstock‐Kurzweil Integral for Value in Riesz Spaces Defined on Euclidean Spaces, Proceeding of National Seminar FMIPA, UNY, Yogyakarta. Boccuto, A., 1998 , Differential and integral calculus in Riesz Spaces, Tatra Mountains Math. Publ.,14,133‐323. Boccuto, A and Riecan, B., 2004 , On The Henstock‐Kurzweil Integral for Riesz‐ Space ‐Valued Functions Defined on Unbounded Intervals, Chech. Math. Journal, 54,3, 591‐607. Pfeffer, W.F., 1993 , The Riemann Approach to Integration, Cambridge University Press. Riecan, B., 1989 , On the Kurzweil Integral for Functions with Values in Ordered Spaces I, Acta Math. Univ. Comenian. 56‐57,75‐83. Matematika 935 Riecan, B., 1992 , On Operator Valued Measures in Lattice ordered Groups, Atti. Sem. Mat. Fis. Univ. Modena, 40, 151‐154. Riecan, B and Neubrunn, T., 1997 , Integral, Measure and Ordering, Kluwer Academic Publishers, Bratislava. Riecan, B and Vrabelova, M., 1996 , On The Kurzweil integral for Functions with Values in Ordered Spaces III, Tatra Mountains Math. Publ.,8, 93‐100. Zaanen, A.A., 1997 , Introduction to Operator Theory in Riesz Spaces, Springer Verlag. SEMNAS Matematika dan Pend. Matematika 2007 936 Model Hazard Proporsional Semiparametrik dengan Hazard Dasar Parametrik Toha Saifudin dan Suliyanto Jurusan Matematika, FMIPA Universitas Airlangga Kampus C Jl. Mulyorejo Surabaya 60115 , Telp. 031‐5936501 Abstrak Model hazard proporsional semiparametrik dalam penelitian ini diasumsikan mempunyai bentuk , | X t h t h Z X Ψ = dengan , Z merupakan vektor dari peubah bebas, X peubah bebas, merupakan vektor dari koefisien regresi , merupakan fungsi hazard dasar, dan } exp{ , X T λ + = Ψ β Z X Z 1 px 1 px t h X λ adalah fungsi smooth yang tidak diketahui. Tujuan dari tulisan ini adalah membahas estimasi parameter model di atas jika digunakan hazard dasar parametrik dan diterapkan pada sampel tersensor tipe I dengan menggunakan metode Generalized Profile Likelihood. Kata kunci : hazard semiparametrik, fungsi smooth, Generalized Profile Likelihood

1. Pndahuluan